Influencia de la Relación Carbono/Nitrógeno en la Producción de Proteínas Totales en Chlorella Vulgari s UTE X 1803.

Linda Estephany Durán Serrano, Andrés Fernando Barajas Solano, Ángel Darío González Delgado, Crisóstomo Barajas Ferreira

Resumen


Las microalgas representan una fuente de proteína con posibles aplicaciones en la nutrición humana y animal ya que poseen un buen balance de aminoácidos y bajos valores de ácidos nucleícos, en comparación con otras fuentes de proteína; sin embargo, la baja productividad de estos cultivos ha impedido implementar una producción a gran escala. En este trabajo se estudió la influencia de la relación carbono/nitrógeno en la productividad de proteínas totales presentes en Chlorella vulgaris
a escala de laboratorio. Se efectuaron cultivos mixotróficos durante 5 días con diferentes concentraciones de acetato (5mM, 10mM, 20mM), y nitrato de sodio (0,97mM, 1,94mM, 2,94mM). Todos los tratamientos se realizaron a 23 ± 1ºC, con ciclos luz-oscuridad 12h: 12h. El valor más alto de concentración de proteínas se obtuvo en el medio de cultivo R9 con una productividad de 0,78±0.18 g/L, superando 1,7 veces más en producción, al cultivo control (0,46 g/L). De igual manera, fue el cultivo que consumió mayor cantidad de nitrógeno (91%). Con base en los datos obtenidos y el análisis de los mismos, se encontró que el contenido de proteínas totales en C. vulgaris es directamente proporcional a la cantidad de acetato y nitrato presentes en el medio, mientras que la respuesta de la cepa algal en cultivos con limitación de estos nutrientes, registró los valores más bajos en relación con la concentración de proteínas.

Palabras clave


acetato; cultivos mixotróficos; microalgas; nitrato de sodio; productividad

Texto completo:

PDF

Referencias


J. H. Wilson. “The food value of Phaeodactylum tricornutum Bohlin to the larvae of Ostrea edulis L. and Crassostrea gigas Thunberg.” Aquaculture, vol. 13, pp. 313-323, 1978.

C.J. Dawes. Botánica marina. Ed. Limusa, México, D. F.p. 673, 1986.

D. W. Marshall. Biología de las Algas. Enfonque fisiológico. Ed. Limusa. México. D. F. pp. 12-13, 1987.

O. Pulz. “Photobioreactors: production systems for phototrophic microorganisms”. Appl. Microbiol. Biotechnol, vol. 5, pp. 287–293, 2001.

H. J. Morris,.; M. M Quintana,. A Almarales y , L. Hernández. “Composición bioquímica y evaluación de la calidad proteica de la biomasa autotrófica de Chlorella vulgaris”. Rev Cubana Aliment Nutr.vol. 13, pp. 123-128, 1999.

M. R Brown. Nutritional value of microalgae for aquculture. Avances en Nutrición Acuícola VI. Memorias del VI Simposium Internacional de Nutrición Acuícola. 3 al 6 de Septiembre del 2002. Cancún, Quintana Roo, México. 282-292, 2002.

E. W. Becker, “Micro-algae as a source of protein”. Biotechnology.vol. 25, pp. 207–210, 2007.

A. Edberg, “Growth of Chlorella vulgaris at High Carbon Dioxide Levels in Swedish Light Conditions”. Master of Science Thesis in Energy Engineering. Umeå Institute of Technology, 2010.

W. Xiong,. C. Gao, D. Yan, C. Wu, Q. Wu. “Double CO2 fixation in photosynthesis–fermentation model enhances algal lipid synthesis for biodiesel production”. Bioresource Technology, vol. 101, pp. 2287– 2293, 2010.

F. Fernández, J. Pérez, J. Sevilla, F. Camacho, E. Grima. “Modeling of eicosapentaenoic acid (EPA) production from Phaeodactylum tricornutum cultures in tubular photobioreactors. Effects of dilution rate, tube diameter, and solar irradiance”. Biotechnology and Bioengineering.vol. 68, pp.173–183, 2000.

Ma. E Martínez, A.F. Camacho, J.M. Jimenez, , J. B. Espinola. “Influence of light intensity on the kinetic and yield parameters of Chlorella pyrenoidosa mixotrophic growth”. Process Biochemistry.vol 32,pp. 93-98, 1997.

T. Ogawa, S. Aiba, “Bioenergetic analysis of mixotrophic growth in Chlorella vulgaris and Scenedesmus acutus”. Biotechnology and Bioengineering, vol. 23, pp. 1121–1132, 1981.

F. J. Márquez, K. Saski,, T. Kakizono, N. Nishio, S. Nagai, “Growth characteristics of Spirulina platensis in mixotrophic and heterotrophic conditions”. Ferment Bioeng. Vol. 76, pp. 408–410, 1993.

X. Liu, S. Duan, A. Li, N. Xu, Z. Cay, Z. Hu,. « Effects of organic carbon sources on growth, photosynthesis, and respiration of Phaeodactylum tricornutum”. Journal of Applied Phycology. Vol. 21, pp. 239-246, 2009.

J. Kim, B:P: Lingaraju, R. Rheaume, J. Lee, K:F: Siddiqui. “Removal of Ammonia from Wastewater Effluent by Chlorella Vulgaris”. Tsinghua Science and Technology. vol. 15, pp. 391-396, 2010.

M:J: Merrett and P:J: Syrett. “The relationship between glucose oxidation and acetate oxidation in Chlorella vulgaris”. Physiologia. vol. 13, pp. 237-49, 1960.

H. Kornberg, and H. Krebs. “Synthesis of cell constituents from C2-units by a modified tricarboxylic acid cycle. Nature, vol. 179, pp. 988-991, 1957.

H. Kornberg and S. Elsden. “The Metabolism of 2-Carbon Compounds by Microorganisms”. Adv Enzymol Related Areas Molecular Biology, vol. 23, pp. 401–470, 1961.

K. Goulding, and M. Merrett,. “The Photometabolism of Acetate by Chlorella pyrenoidosa”. J Experiment Bot. vol. 17, pp. 678-689, 1966.

M. Borowitzka. “Commercial production of microalgae: ponds, tanks, tubes and fermenters”. Journal of Biotechnology. Vol. 70, pp. 313–321, 1999.

P:J: Syrett, S:M: Bocks, M:J. Merrett. The assimilation of acetate by Chlorella vulgaris. Ibid. 15: 35-47, 1964.

K. Flynn. “Algal carbon-nitrogen metabolism: a biochemical basis for modelling the interactions between nitrate and ammonium uptake”. Journal of Plankton Research. vol. 13, pp. 373-387, 1991.

H. C.Huppe and D.H. Turpin. “Integration of carbon and nitrogen metabolism in plant and algal cells”. Plant Physiol. Plant Mol. Bioi, vol. 45, pp. 507- 577, 1994.

A.M. Illman, A.H. Scragg and S.W. Shales, “Increase in Chlorella strains calorific values when grown in low nitrogen medium”. Enzyme and Microbial Technology. vol. 27, pp. 631–635, 2000.

A.H. Scragg, , A.M. Illman, A. Carden, S.W. Shales. Growth of microalgae with increased calorific values in a tubular bioreactor. Biomass and Bioenergy, vol. 23, pp. 67 – 73, 2002.

C.Y. Lin and C.H. Lay. “Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microflora”. International Journal of Hydrogen Energy. vol. 29, pp. 41 – 45, 2004.

S. Sánchez, S., M.A. Martínez and F. Espinola. “Biomass

production and biochemical variability of the marine microalga Isochrysis galbana in relation to culture medium”. Biochemical Engineering Journal. vol. 6, pp. 13–18, 2000.

P. Hernández-Benítez and C. Rosas-Oviedo. “Efecto de la relación carbono/nitrógeno en la productividad de biomasa de Chlorella vulgaris UTEX 1803 en fotobioreactores a escala de laboratorio” Fac. Ingeniería Fisicoquímica Tesis de pregrado, Universidad Industrial de Santander, Bucaramanga, Colombia, 62, 2011. 58 Revista Especializada en Ingeniería de Procesos en Alimentos y Biomateriales

F. Dorey and G. Draves. Quantitative Analysis Laboratory: A New Approach Funded by the National Science Foundation. University of Central Arkansas. 1-3, 1998.

L.S. Clesceri, A.E. Greenberg and A.D. Eaton,. “Standar Methods for the examination of water and wastewater” American Public Health Association, vol. 20, pp. 708-710, 1999.

R.E. Parker. “ Introductory Statistics for Biology”. Cambridge University Press. Cambridge, vol. 2, pp. 60-73, 1980.

J. Zar. Biostatistical analysis. 4ª. Ed.. Prentice Hall, Englewood Cliffs, New Jersey. 663 pp, 1999.

Ø Hammer,, D. Harper and P. Ryan. PAST. “Paleontological Statistics Software Package for Education and Data Analysis”. Palaeontologia Electrónica, vol. 4, pp. 1-9, 2001.

Statsoft Inc (2011). STATISTICA 10. [Programa informático]. Disponible en: http://www.statsoft.com/.

V. Ördög, W.A. Stirk, P. Bálint, J.V. Staden and C. Lovász. “Changes in lipid, protein and pigment concentrations in nitrogen-stressed Chlorella minutissima cultures”. J Appl Phycol, vol. 97, pp. 11-19, 2011.

N.E. Farrill, L. Travieso, F. Benítez, E. Bécares, S. Romo, R. Borja, P. Weiland and E. Sánchez. “Population Dynamic of Algae and Bacteria in an Oxidation Channel”. Journal of Environmental Science and Health., vol. 38, pp. 697-709, 2003.

J. Fábregas, J. Abalde and C. Herrero. “Biochemical composition and growth of the marine microalga Dunaliella tertiolecta (Butcher) with different ammonium nitrogen concentration as chloride, sulphate, nitrate and carbonate” Aguaculture.vol. 83, pp. 289-304, 1989.

D.A. Walker. “Pyruvate carboxylation and plant metabolism”. Biol. Rev, vol. 37, pp. 215-56, 1962.

B. Richardson, D.M. Orcutit, H.A. Schwertner, , C.L. Martinez and H.E. Wickline,. “Effects of Nitrogen Limitation on the Growth and Composition of Unicellular Algae in Continuous Culture”. Applied Microbiology, vol. 18, pp. 245-250, 1969.

Y. Liang, Y., N. Sarkany, Y. Cui. “Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions”. Biotechnol Lett, vol. 31, pp. 1043-1049, 2009.

W.M. Rowley.. “Nitrogen and phosphorus biomass-kinetic model for Chlorella vulgaris in a biofuel production scheme”. Thesis. Air Force Institute of Technology. Air University, 2010.

L. Uslu, O. Isik, K. Koç and T. Göksan, “The effects of nitrogen deficiencies on the lipid and protein contents of Spirulina platensis”. African Journal of Biotechnology, vol. 10, pp. 386-389, 2011.

O.C. Quevedo, V.S. Morales and C.A. Acosta.. “Crecimiento de Scenedesmus sp en diferentes medios de cultivo para la producción de proteína microalgal”. Vitae.vol. 15, pp. 25-31, 2008.

G. Hitchcock, C. Goldman and M. Dennett. “Photosynthate partitioning in cultured marine phytoplankton metabolic patterns in a marine diatom under constant and variable light intensities”. Marine Ecology Progress. Vol. 30, pp. 77-84, 1986




DOI: https://doi.org/10.22490/25394088.1111

Métricas de artículo

Vistas de resumen.
a description of the source 147




Cargando métricas ...

Enlaces refback

  • No hay ningún enlace refback.


Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-CompartirIgual 4.0 Internacional.

Licencia de Creative Commons
Revista Publicaciones e Investigación is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.