Copyright (c) 2024 Revista de Investigación Agraria y Ambiental

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
When RIAA receives the postulation of an original by its author, either through email or post mail, considers that it can be published in physical and/or electronic format and facilitates its inclusion in databases, newspaper archives and other systems and indexing process. RIAA authorizes the reproduction and citation of the Journal’s material, provided that explicitly indicates journal name, the authors, the article title, volume, number and pages. The ideas and concepts expressed in the articles are responsibility of the authors and in no case reflect the institutional policies of the UNAD.
Soil acidity limits agricultural production: a review focused on the colombian amazon
Contextualization: acidic tropical soils are characterized by low pH, high concentrations of aluminum and low nutrient availability, which limits root development and crop production. The soils of the Colombian Amazon, where Oxisols and Ultisols predominate, are part of this group of acidic soils with low natural fertility.
Knowledge gap: the behavior of plants that grow in acidic soils has occupied the interest of researchers around the world, but there is a lack of updated and freely accessible information that allows us to sufficiently understand the nature of these soils, as well as the morphological, physiological, and biochemical adaptation strategies of crops of agricultural importance developed in the acidic soils of the Colombian Amazon.
Purpose: present a synthesis of the latest scientific advances related to acidic soils, the relationship of acidity with nutrient availability and the toxic effects of aluminum, as well as the adaptation mechanisms developed by plants. This review also addresses in a special way the effects of soil acidity on eight crops of agricultural importance for producers in the Colombian Amazon.
Methodology: a search was carried out for free access articles published in four Web databases between 2020 and 2023, on the forms of aluminum in the soil, its relationship with nutrient availability, toxic effects, tolerance mechanisms of the plant and some acid soil management practices.
Results and conclusions: this study provides important elements that help improve the understanding of acidic soils and proposes future scenarios to guide knowledge management on the management of acidic soils and agricultural crops in the Colombian Amazon.
Agegnehu, G., Amede, T., Erkossa, T., Yirga, C., Henry, C., Tyler, R., Nosworthy, M. G., Beyene, S., Sileshi, G. W. (2021). Extent and management of acid soils for sustainable crop production system in the tropical agroecosystems: a review. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 71(9), 852-869. https://doi.org/10.1080/09064710.2021.1954239
Agronet, (2023). Producción nacional por departamento. (consultada 7-04-2023, 10:34 pm). https://www.agronet.gov.co/Paginas/ProduccionNacionalDpto.aspx
Alkharabsheh, H.M., Seleiman, M.F., Battaglia, M.L., Shami, A., Jalal, R.S., Alhammad, B.A., Almutairi, K.F., Al-Saif, A.M. (2021). Biochar and Its Broad Impacts in Soil Quality and Fertility, Nutrient Leaching and Crop Productivity: A Review. Agronomy, 11, 993. https://doi.org/10.3390/agronomy11050993
An, F., Li, C.Z., Zhang, T.T., Wang, L.F., Wang, J.K., Xie, G.S. (2018). Effects of aluminum toxicity on physiological and leaf chlorophyll fluorescent characteristics of rubber tree seedlings. Ying Yong Sheng Tai Xue Bao, 29, 4191–4198. https://doi.org/10.13287/j.1001-9332.201812.006
Anderson, G.C., Pathan, S., Easton, J., Hall, D.J.M., Sharma, R. (2020). Short- and Long-Term Effects of Lime and Gypsum Applications on Acid Soils in a Water-Limited Environment: 2. Soil Chemical Properties. Agronomy, 10, 1987. https://doi.org/10.3390/agronomy10121987
Aramburu M. F., Vasco S. J., Baudron, F., Hijmans, J. R. (2023). Estimating lime requirements for tropical soils: Model comparison and development, Geoderma, 432, 116421. https://doi.org/10.1016/j.geoderma.2023.116421
Ares, A., Molina, E., Cox, F., Yost, R., Boniche, J. (2002). Fertilización fosforada del pejibaye para palmito (Bactris gasipaes) en vivero y en plantación. Agronomía Costarricense, 26(2), 63-74. http://www.redalyc.org/articulo.oa?id=43626206
Armatmontree, C., Leksungnoen, P., Nansahwang, A., Aramrak, S., Kongsil, P., Wisawapipat, W. (2023). Iron toxicity downregulates root-proton efflux and decreases zinc accumulation in cassava, Annals of Agricultural Sciences, 68(1), 97-104, https://doi.org/10.1016/j.aoas.2023.06.004
Anikwe M.A.N., Eze, J.C., Ibudialo, A.N. (2016). Influence of lime and gypsum application on soil properties and yield of cassava (Manihot esculenta Crantz.) in a degraded Ultisol in Agbani, Enugu Southeastern Nigeria, Soil and Tillage Research, 158, 32-38. https://doi.org/10.1016/j.still.2015.10.011
Bakari, R., Mungai, N., Thuita, M., Masso, C. (2020) Impact of soil acidity and liming on soybean (Glycine max) nodulation and nitrogen fixation in Kenyan soils. Acta Agriculturae Scandinavica, Section B - Soil & Plant Science, 70(8), 667-678. https://doi.org/10.1080/09064710.2020.1833976
Barrow, N.J., Hartemink, A.E. (2023). The effects of pH on nutrient availability depend on both soils and plants. Plant Soil, 487, 21–37. https://doi.org/10.1007/s11104-023-05960-5
Delgado, L. B., Calle, D.A., Cardona, S. P., Sánchez, D. C., Bernal, M.G., Henao, S. Z. (2023). Relationship between soil acidity and productivity of banana (Musa spp.) in Urabá, Colombia. Chilean Journal of Agricultural and Animal Sciences, 39(2), 228 – 238. https://doi.org/10.29393/CHJAA39-20RBLS60020
Bekele W. M., Haile W. W., Kebede Y. F. (2022). Effects of minimum tillage and liming on maize (Zea mays L.) yield components and selected properties of acid soils in Assosa Zone, West Ethiopia. Journal of Agriculture and Food Research, 8, 100301. https://doi.org/10.1016/j.jafr.2022.100301
Betancourt Y, P., Montilla, I., Hernández, C., Gallardo, E. (2005). Fertilización nitrogenada en el cultivo de piña (Ananas comosus L. Merr) en el sector Páramo Negro, municipio Iribarren estado Lara. Revista de la Facultad de Agronomía, 22(4), 382-393. http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0378-78182005000400006&lng=es&tlng=es
Bossolani, J.W., Costa, C. CA., Merloti, L.F., Moretti, L.G., Costa, N.R., Tsai, S.M., Kuramae, E.F. (2020). Long-term lime and gypsum amendment increase nitrogen fixation and decrease nitrification and denitrification gene abundances in the rhizosphere and soil in a tropical no-till intercropping system, Geoderma, 375, 114476. https://doi.org/10.1016/j.geoderma.2020.114476
Bovi, M. L. A., Spiering, S. H., Saes, L. A. (2004). Peach palm growth and heart-of-palm yield responses to liming. Revista brasileira de Ciência do Solo, 28, 1005-1012. https://doi.org/10.1590/S0100-06832004000600009
Bozzi, Z. L., Ferreira, L. J., dos Santos, A.C., Pellegrino, C. C.E., Senna, O. T. (2023). Soil carbon and nitrogen stocks following forest conversion to long-term pasture in Amazon rainforest-Cerrado transition environment, CATENA, 231, 107346. https://doi.org/10.1016/j.catena.2023.107346
Cahyono, P., Loekito, S., Wiharso, D., Afandi., Rahmat, A., Nishimura, N., Noda K., Masateru, S. (2019). Influence of liming on soil chemical properties and plant growth of pineapple (Ananas comusus L. Merr.) on red acid soil, Lampung, Indonesia. Soil Science and Plant Analysis, 50(22), 2797-2803. https://doi.org/10.1080/00103624.2019.1671441
Carreño, A., Chaparro-Giraldo, A. (2013). Tolerancia al aluminio en especies vegetales: mecanismos y genes. Universitas Scientiarum, 18(3), 283-310. http://www.scielo.org.co/pdf/unsc/v18n3/v18n3a04.pdf
Cerda, M. G., Salgado, M. G., Esquinca, H., Gómez, A. I. (2022) Manejo agronómico de la acidez y aluminio en suelos de plantaciones de café, coffee arabica en berriozabal, motozintla. Ciencia Latina Revista Científica Multidisciplinar, 6(4), 147-164. https://doi.org/10.37811/cl_rcm.v6i4.2525
Che, J., Zhao, X.Q., Shen, R.F; (2023). Molecular mechanisms of plant adaptation to acid soils: A review. Pedosphere, 33(1), 14-22. https://doi.org/10.1016/j.pedsph.2022.10.001
Chiapini, M., Schellekens, J., Calderi O J., Calegari, R., Vidal T., P. (2023). Pedogenesis in very deep autochthonous Ferralsols of the Paraná Igneous Province (Brazil). CATENA, 224, 106981, https://doi.org/10.1016/j.catena.2023.106981
Chunquan, Z., Wenjun, H., Xiaochuang, C., Lianfeng, Z., Yali, K., Qianyu, J., Guoxin, S., Weipeng, W., Hui, Z., Junhua, Z. (2021). Physiological and Proteomic Analyses Reveal Effects of Putrescine-Alleviated Aluminum Toxicity in Rice Roots. Rice Science, 28(6), 579-593, https://doi.org/10.1016/j.rsci.2021.03.002
Coraspe, J., González, L. R. (2020). Efecto de fertilizantes orgánicos e inorgánicos naturales sobre el aluminio intercambiable en suelos ácidos cafetaleros. Revista Unellez de Ciencia y Tecnología, 38. http://200.11.218.106/index.php/ruct/article/view/1727/1541
da Silva, J. B. F., Clement, C. R. (2005). Wild pejibaye (Bactris gasipaes Kunth var. chichagui) in Southeastern Amazonia. Acta Botanica Brasilica, 19, 281-284. https://doi.org/10.1590/S0102-33062005000200010
de Campos, M., Penn, C. J., Gonzalez, J. M., Costa C. C.A. (2022). Effectiveness of deep lime placement and tillage systems on aluminum fractions and soil chemical attributes in sugarcane cultivation. Geoderma, 407, 115545. https://doi.org/10.1016/j.geoderma.2021.115545
Deenik, J., Ares, A., Yost, R. S. (2000). Fertilization response and nutrient diagnosis in peach palm (Bactris gasipaes): a review. Nutrient Cycling in Agroecosystems, 56, 195-207. https://doi-org.ezproxy.unal.edu.co/10.1023/A:1009847508353
Diniz, A.R., da Silva C. S., Pereira, M. G., Zonta, E., Fernandes D. A.C., Souza, A. C.O., de Moraes A. G.L. (2022). Influence of spatial variability of soil chemical attributes on the nutritional status and growth of the rubber tree. Bioscience Journal. 38, e38052. https://doi.org/10.14393/BJ-v38n0a2022-54026
Ejigu, W., Selassie, Y. G., Elias, E. (2023). Effect of lime rates and method of application on soil properties of acidic Luvisols and wheat (Triticum aestivum L.) yields in northwest Ethiopia. Heliyon, 9(3), e13988. https://doi.org/10.1016/j.heliyon.2023.e13988
Ferreira-Silva, T., Garcia-Ferreira, B., dos Santos-Isaias, R.M., Silva-Alexandre, S., Costa-França, M.G. (2020). Immunocytochemistry and Density Functional Theory evidence the competition of aluminum and calcium for pectin binding in Urochloa decumbens roots. Plant Physiology and Biochemistry, 153, 64-71. https://doi.org/10.1016/j.plaphy.2020.05.015
Flarian, M.M., Frederick, A.O., Samuel, A.O., John, W. K., Cosmas, W. (2023). Variations in soil chemical properties and growth traits of tissue culture banana under bio-slurry soil amendments in Uganda. Environmental Sustainability, 6, 341–357. https://doi.org/10.1007/s42398-023-00274-9
Fung, K., Carr, H., Poon, B., Wong, M. (2009). A comparison of aluminum levels in tea products from Hong Kong markets and in varieties of tea plants from Hong Kong and India. Chemosphere, 75, 955 – 962. https://doi.org/10.1016/j.chemosphere.2009.01.003
Furlan, F., Borgo, L., Silveira-Rabêlo, F.H., Lanzoni-Rossi, M., ScagliaLinhares, F., Pinheiro-Martinelli, A., Antunes-Azevedo, R., Lavres, J. (2020). Aluminum-induced toxicity in Urochloa brizantha genotypes: A first glance into root Al-apoplastic and -symplastic compartmentation Al-translocation and antioxidant performance. Chemosphere, 243, 125362. https://doi.org/10.1016/j.chemosphere.2019.125362
Gallo-Franco, J.J., Zuluaga-Yusti, I., Restrepo-García, A.M., Sosa, C.C., Zapata-Balanta, S., Gutiérrez-Marín, J.P., Ghneim-Herrera, T., Quimbaya, M. (2023). Transcriptional analysis in four wild and cultivated rice genotypes identifies aluminum-induced genes. Plant Stress, 10, 100247, 2667-064X, https://doi.org/10.1016/j.stress.2023.100247
Gonçalves, D.A.M., Pereira, W.V.d.S., Johannesson, K.H., Pérez, D.V., Guilherme, L.R.G., Fernandes, A.R. (2022). Geochemical Background for Potentially Toxic Elements in Forested Soils of the State of Pará, Brazilian Amazon. Minerals, 12, 674. https://doi.org/10.3390/min12060674
Gregory, P.J., Wojciechowski, T. (2020). Chapter one - root systems of major tropical root and tuber crops: root architecture, size, and growth and initiation of storage organs. Adv. Agron. 161, 1–25. https://doi.org/10.1016/bs.agron.2020.01.001
Guerra, B. E., Chacon, M. R. (2012). Simbiosis micorrizica arbuscular y acumulación de aluminio en brachiaria decumbens y manihot esculenta. Biotecnología en el Sector Agropecuario y Agroindustrial: BSAA, 10(2), 87-98. https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/812/436
Jiang, N., Ren, J., Zu, Y., Sun, W., Ma, X., Bi, Y. (2022). Aluminum Exposure Effect on Cell Wall Pectin Methyl Esterification in Alfalfa with Different Aluminum Tolerance. Polish Journal of Environmental Studies, 31(5). https://doi.org/10.15244/pjoes/149448
Junior, G. D. S. S., Hurtado, A. C., Alves, R. C., Gasparino, E. C., Santos, D. M. M. (2023). Interactive Role of Silicon on Attenuating Aluminum Toxicity in Sugarcane by Modifying Growth, Root Morphoanatomy, Photosynthetic Pigments, and Gas Exchange Parameters. 1-24. https://doi.org/10.21203/rs.3.rs-2662416/v1
Hadas, E., Mingelgrin, U., Fine, P. (2021). Economic cost–benefit analysis for the agricultural use of sewage sludge treated with lime and fly ash. Int J Coal Sci Technol, 8, 1099–1107. https://doi.org/10.1007/s40789-021-00439-z
Husain, S.H., Mohammed, A., Ch'ng, H.Y., Khalivulla, S.I. (2021). Residual effects of calcium amendments on oil palm growth and soil properties. IOP Conference Series. Earth and Environmental Science, 756(1), 012060. https://doi.org/10.1088/1755-1315/756/1/012060
Kundu, A., Ganesan, M. (2020). GhMATE1 expression regulates Aluminum tolerance of cotton and overexpression of GhMATE1 enhances acid soil tolerance of Arabidopsis. Current Plant Biology, 24, 100160, https://doi.org/10.1016/j.cpb.2020.100160
Kundu, A., Ganesan, M. (2023). Low pH stress activates several genes for lateral root formation and detoxification of aluminum ions in Cotton plants. Plant Stress, (9), 100188. https://doi.org/10.1016/j.stress.2023.100188
Labanca, E. R. G., Andrade, S. A. L., Kuramae, E. E., Silveira, A. P. D. (2020). The modulation of sugarcane growth and nutritional profile under aluminum stress is dependent on beneficial endophytic bacteria and plantlet origin. Applied Soil Ecology, 156, 103715. https://doi.org/10.1016/j.apsoil.2020.103715
Lauricella, D., Butterly, C.R., Weng, Z., Clark, G.J., Sale, P. W.G., Li, G., Tang, C. (2021). Impact of novel materials on alkalinity movement down acid soil profiles when combined with lime. J Soils Sediments, 21, 52–62. https://doi.org/10.1007/s11368-020-02747-4
Li, X., Zhang, X., Zhao, Q., Liao, H. (2023). Genetic improvement of legume roots for adaption to acid soils. The Crop Journal, 11(4), 1022-1033. https://doi.org/10.1016/j.cj.2023.04.002
Li, Z., Huang, F., Hu, B., Qiu, M. (2022). Detoxification of aluminum by Ca and Si is associated to modified root cell wall properties. Theor. Plant Physiol. 34, 131–142. https://doi.org/10.1007/s40626-022-00235-3
Lin, Q., Huai, Z., Riaz, L., Peng, X., Wang, S., Liu, B., Yu, F., Ma, J. (2023). Aluminum phytotoxicity induced structural and ultrastructural changes in submerged plant Vallisneria natans. Ecotoxicology and Environmental Safety, 250, 114484, https://doi.org/10.1016/j.ecoenv.2022.114484
Lin, Y. H. (2010). Effects of aluminum on root growth and absorption of nutrients by two pineapple cultivars [Ananas comosus L.) Merr.]. African Journal of Biotechnology, 9(26), 4034-4041. https://www.ajol.info/index.php/ajb/article/view/82560
Mbanjwa, W. E., Muchaonyerwa, P., Hughes, J.C. (2023). Total organic carbon, aluminium and iron in bulk samples and aggregate size fractions of a sandy clay loam humic soil under sugarcane relative to native forest in northern KwaZulu-Natal, South Africa. Heliyon, 9(3), e14000, https://doi.org/10.1016/j.heliyon.2023.e14000
Ndiate, N. I., Qun, C. L., Nkoh, J.N. (2022). Importance of soil amendments with biochar and/or Arbuscular Mycorrhizal fungi to mitigate aluminum toxicity in tamarind (Tamarindus indica L.) on an acidic soil: A greenhouse study. Heliyon, 8 (2), e09009, https://doi.org/10.1016/j.heliyon.2022.e09009
Nie, Z., Li, J., Liu, H., Liu, S., Wang, D., Zhao, P., Liu, H. (2020). Adsorption kinetic characteristics of molybdenum in yellow-brown soil in response to pH and phosphate. Open Chem, (18), 663-8. https://doi.org/10.1515/chem-2020-0501
Ofoe, R., Thomas, R. H., Asiedu, S. K., Wang, P. G., Fofana, B., Abbey, L. (2023). Aluminum in plant: Benefits, toxicity and tolerance mechanisms. Frontiers in Plant Science, 13, 1664-462X. https://doi.org/10.3389/fpls.2022.1085998
Page, M. J., Moher, D., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glan-ville, J., Grimshaw, J. M., Hróbjarts-son, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., ... McKenzie, J. E. (2021). PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ, 372, n160. https://doi.org/10.1136/bmj.n160
Parecido, R. J., Soratto, R. P., Perdoná, M. J., Gitari, H. I., Dognani, V., Santos, A. R., Silveira, L. (2021). Liming method and rate effects on soil acidity and Arabica coffee nutrition, growth, and yield. Journal of Soil Science and Plant Nutrition, 21, 2613-2625. https://doi.org/10.1007/s42729-021-00550-9
Pavlú, L., Borúvka, O., Nokodem, A. (2021). Effect of natural and anthropogenic acidification on aluminium distribution in forest soils of two regions in the Czech Republic. For. Res, 32, 363–370. https://doi.org/10.1007/s11676-019-01061-1
Prietzel, J., Villalba, A. G., Häusler, W., Eusterhues, K., Mahakot, S., Klysubun, W. (2023). Aluminum speciation in forest soils and forest floor density fractions using synchrotron-based XANES spectroscopy. Geoderma, 431, 116373, https://doi.org/10.1016/j.geoderma.2023.116373
Punpom, T., Leksungnoen, P., Aramrak, S., Kongsil, P., Wisawapipat, W. (2022). Triggering root proton efflux as an aluminum-detoxifying mechanism in cassava. Annals of Agricultural Sciences, 67(2), 173-180, https://doi.org/10.1016/j.aoas.2022.10.002
Rai, S., Kumar P. S., Mankotia, S., Swain, J., Satbhai, S. B. (2021). Iron homeostasis in plants and its crosstalk with copper, zinc, and manganese. Plant Stress, 1, 100008, https://doi.org/10.1016/j.stress.2021.100008
Rahman, R., Upadhyaya, H. (2021). Aluminium Toxicity and Its Tolerance in Plant: A Review. J. Plant Biol, 64, 101–121. https://doi.org/10.1007/s12374-020-09280-4
Ranjan, A., Sinha, R., Sharma, T. R., Pattanayak, A., Singh, A. K. (2021). Alleviating aluminum toxicity in plants: Implications of reactive oxygen species signaling and crosstalk with other signaling pathways. Physiologia Plantarum, 173(4), 1765-1784. https://doi.org/10.1111/ppl.13382
Ribeiro, A. P., Vinecky, F., Duarte, K. E., Thaís R. S., das Chagas, N.C.R.A., Hell, A.F., da Cunha, B.A. D.B., Martins, P.K., da Cruz C. D., de Oliveira, M. P.A., de Almeida, C. G. M., Magalhães, J. V., Kobayashi, A.K., de Souza, W.R., Molinari, H.B.C. (2021). Enhanced aluminum tolerance in sugarcane: evaluation of SbMATE overexpression and genome-wide identification of ALMTs in Saccharum spp. BMC Plant Biology. 300, 21, https://doi.org/10.1186/s12870-021-02975-x
Rosa, S. T.M., Silva, R. G. D., Kumar, P., Kottapalli, P., Crasto, C., Kottapalli, K. R., Zingaretti, S. M. (2020). Molecular mechanisms underlying sugarcane response to aluminum stress by RNA-Seq. International journal of molecular sciences, 21(21), 7934. https://doi.org/10.3390/ijms21217934
Rosado, TL., Freitas, MSM., Carvalho, AJC., Gontijo, I., Pires, AA., Vieira, HD., Barcellos, R. (2021). Soil chemical properties and nutrition of conilon coffee fertilized with molybdenum and nitrogen. Rev Bras Cienc Solo, 45:e0210034. https://doi.org/10.36783/18069657rbcs20210034
Rosas P. G., Puentes, P. Y. J., Menjivar, F. J. C. (2017). Relación entre el pH y la disponibilidad de nutrientes para cacao en un entisol de la Amazonia colombiana. Corpoica Ciencia y Tecnología Agropecuaria, 18(3), 529-541. https://doi.org/10.21930/rcta.vol18_num3_art:742.
Rosas P. G., Puentes, P. Y. J., Menjivar, F. J. C. (2019). Liming effect on macronutrient intake for cacao (Theobroma cacao L.) in the Colombian Amazon. Cienc. Tecnol. Agropecu. 20, 5–28. https://doi.org/10.21930/rcta.vol20_num1_art:1247
Rosas P. G., Puentes P. Y.J., Menjivar F. J.C. (2021). Efecto del pH sobre la concentración de nutrientes en cacao (Theobroma cacao L.) en la Amazonia Colombiana. Rev. U.D.C.A Act. & Div. Cient. 24(1), e1643. http://doi.org/10.31910/rudca.v24.n1.2021.1643
Ruehlmann, J., Bönecke, E., Meyer, S. (2021). Predicting the Lime Demand of Arable Soils from pH Value, Soil Texture and Soil Organic Matter Content. Agronomy, 11, 785. https://doi.org/10.3390/agronomy11040785
Rufyikiri, G., Dufey, J., Nootens, D., Delvaux, B. (2001). Efecto del aluminio sobre plátanos (Musa spp.) cultivados en soluciones ácidas. II. Absorción de agua y nutrientes. Frutas, 56(1), 5-16. https://doi:10.1051/frutas:2001107
Sadeghian K. S., Díaz M. C. (2020). Corrección de la acidez del suelo: Efectos en el crecimiento inicial del café. Revista Cenicafé, 71(1), 21-31. https://doi.org/10.38141/10778/1117
Sánchez R. A.D., Ávila P. E.Á., Lombardini, L., Restrepo D. H. (2023). The Application of Coffee Pulp Biochar Improves the Physical, Chemical, and Biological Characteristics of Soil for Coffee Cultivation. Journal of Soil Science and Plant Nutrition, 1-13. https://doi.org/10.1007/s42729-023-01208-4
Takala, B. (2020). Ameliorative effects of coffee husk compost and lime amendment on acidic soil of haru, western Ethiopia. Journal Soil Water Science, 4(1), 141-150. https://doi10.36959/624/439
Teixeira, W. G., Alvarez V., V. H., Neves, J. C. L., Paulucio, R. B. (2020). Evaluation of traditional methods for estimating lime requirement in Brazilian soils. Revista Brasileira De Ciência Do Solo, 44, e0200078. https://doi.org/10.36783/18069657rbcs20200078
Tiecher, T., Fontoura, S. M.V., Ambrosini, V. G., Araújo, E. A., Alves, L. A., Bayer, C., Gatiboni, L. C. (2021). Soil phosphorus forms and fertilizer use efficiency are affected by tillage and soil acidity management. Geoderma, 435, 116495, https://doi.org/10.1016/j.geoderma.2023.116495
Turner, D.W., Korawis, C., Robson, A.D. (1989). Soil analysis and its relationship with leaf analysis and banana yield with special reference to a study at Carnarvon, Western Australia. Fruits, 44,193-203. file:///C:/Users/57310/Downloads/CIRADjournals,+438351_EN%20(1).pdf
Villegas, D. M., Velasquez, J., Arango, J., Obregon, K., Rao, I. M., Rosas, G., Oberson, A. (2020). Urochloa grasses swap nitrogen source when grown in association with legumes in tropical pastures. Diversity, 12(11), 419. https://doi.org/10.3390/d12110419
Villegas, D. M., Arévalo, A., Sotelo, M., Nuñez, J., Moreta, D., Rao, I., ... y Arango, J. (2023). Phenotyping of Urochloa humidicola grass hybrids for agronomic and environmental performance in the Piedmont region of the Orinoquian savannas of Colombia. Grass and Forage Science, 78(1), 119–128. https://doi.org/10.1111/gfs.12582
Yan, L., Riaz, M., Li, S., Cheng, J., Jiang, C. (2023). Harnessing the power of exogenous factors to enhance plant resistance to aluminum toxicity; a critical review. Plant Physiology and Biochemistry, 203, 108064, https://doi.org/10.1016/j.plaphy.2023.108064
Yang, Z., Zhao, P., Peng, W., Liu, Z., Xie, G., Ma, X., An, Z., An, F. (2022). Cloning, Expression Analysis, and Functional Characterization of Candidate Oxalate Transporter Genes of HbOT1 and HbOT2 from Rubber Tree (Hevea brasiliensis). Cells, 11(23), 3793. https://doi.org/10.3390/cells11233793
Yao, S., Luo, S., Pan, C., Xiong, W., Xiao, D., Wang, A., Zhan, J., He, L. (2020). Metacaspase MC1 enhances aluminum-induced programmed cell death of root tip cells in Peanut. Plant Soil, 448, 479–494. https://doi.org/10.1007/s11104-020-04448-w
Zacháry, D., Filep, T., Jakab, G., Inger, M., Balázs, R., Németh, T., Szalai, Z. (2023). The effect of mineral composition on soil organic matter turnover in temperate forest soils. J Soils Sediments, 23, 1389–1402. https://doi.org/10.1007/s11368-022-03393-8
Zhu, X.F., Shen, R. F. (2023). Towards sustainable use of acidic soils: Deciphering aluminum-resistant mechanisms in plants. Fundamental Research. 14, 41. https://doi.org/10.1016/j.fmre.2023.03.004
Copyright (c) 2024 Revista de Investigación Agraria y Ambiental

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
When RIAA receives the postulation of an original by its author, either through email or post mail, considers that it can be published in physical and/or electronic format and facilitates its inclusion in databases, newspaper archives and other systems and indexing process. RIAA authorizes the reproduction and citation of the Journal’s material, provided that explicitly indicates journal name, the authors, the article title, volume, number and pages. The ideas and concepts expressed in the articles are responsibility of the authors and in no case reflect the institutional policies of the UNAD.
Most read articles by the same author(s)
- Edgar Alvaro Avila Pedraza, Friabilidad del suelo: métodos de estimación con énfasis en la determinación cuantitativa de la resistencia al rompimiento , Revista de Investigación Agraria y Ambiental: Vol. 8 No. 1 (2017)