Copyright (c) 2018 Revista de Investigación Agraria y Ambiental

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
When RIAA receives the postulation of an original by its author, either through email or post mail, considers that it can be published in physical and/or electronic format and facilitates its inclusion in databases, newspaper archives and other systems and indexing process. RIAA authorizes the reproduction and citation of the Journal’s material, provided that explicitly indicates journal name, the authors, the article title, volume, number and pages. The ideas and concepts expressed in the articles are responsibility of the authors and in no case reflect the institutional policies of the UNAD.
Analisyng the evolution of infectious diseases modelling
Aldila D., Götz T. & Soewono E. (2013). An optimal control problem arising from a dengue disease transmission model. Mathematical Biosciences; 242(1): 9–16. http://doi.org/http://dx.doi.org/10.1016/j.mbs.2012.11.014
Álvarez J., Bezos J., de la Cruz M.L., Casal C., Romero B., Domínguez L., et al. (2014). Bovine tuberculosis: Within-herd transmission models to support and direct the decision-making process. Res Vet Sci; 97, Supple, S61 – S68. http://doi.org/http://dx.doi.org/10.1016/j.rvsc.2014.04.00
Atkins K.E., Shim E., Pitzer V.E. & Galvani A.P. (2012). Impact of rotavirus vaccination on epidemiological dynamics in England and Wales. Vaccine; 30(3): 552–564. http://doi.org/http://dx.doi.org/10.1016/j.vaccine.2011.11.064
Bacaër N. (2011). A Short History of Mathematical Population Dynamics. New York, Springer. http://doi.org/10.1007/978-0-85729-115-8
Backer J.A., van Roermund H.J., Fischer E.A., van Asseldonk M.A. & Bergevoet, R.H. ()2015. Controlling highly pathogenic avian influenza outbreaks: An epidemiological and economic model analysis. Prev Vet Med; 121(1–2): 142–150. http://doi.org/http://dx.doi.org/10.1016/j.prevetmed.2015.06.006
Bekara M.A., Courcoul A., Bénet J. & Durand B. (2014). Modeling tuberculosis dynamics, detection and control in cattle herds. PloS One; 9(9), e108584. http://doi.org/10.1371/journal.pone.0108584
Binder B.J., Ross J.V. & Simpson M.J. (2012). A hybrid model for studying spatial aspects of infectious diseases. ANZIAM Journal; 54(1-2): 37–49. http://doi.org/10.1017/S1446181112000296Cai Y., Wang Z. & Wang W. (2016). Endemic dynamics in a host-parasite epidemiological model within spatially heterogeneous environment. Applied Mathematics Letters; 61: 129-136. http://doi.org/http://dx.doi.org/10.1016/j.aml.2016.05.011
Casabán M., Cortés J., Navarro-Quiles A., Romero J., Roselló M. & Villanueva R. (2016). A comprehensive probabilistic solution of random SIS-type epidemiological models using the random variable transformation technique. Communications in Nonlinear Science and Numerical Simulation; 32: 199–210. http://doi.org/http://dx.doi.org/10.1016/j.cnsns.2015.08.009
Casabán M., Cortés J., Romero J. & Roselló M. (2015). Probabilistic solution of random SI-type epidemiological models using the Random Variable Transformation technique. Communications in Nonlinear Science and Numerical Simulation; 24(1–3): 86–97. http://doi.org/http://dx.doi.org/10.1016/j.cnsns.2014.12.016
Cauchemez S. & Ferguson N.M. (2008). Likelihood-based estimation of continuous-time epidemic models from time-series data: Application to measles transmission in London. Journal of the Royal Society Interface; 5(25): 885–897. http://doi.org/10.1098/rsif.2007.1292
Cortés J., Sánchez-Sánchez A., Santonja F. & Villanueva R.J. (2013). Non-parametric probabilistic forecasting of academic performance in Spanish high school using an epidemiological modelling approach. Applied Mathematics and Computation; 221: 648–661. http://doi.org/http://dx.doi.org/10.1016/j.amc.2013.06.070
Daniel W.B., Hengartner N.W., Rivera M.K., Powell D.R. & McPherson T.N. (2013). An epidemiological model of spatial coupling for trips longer than the infectious period. Mathematical Biosciences; 242(1): 1–8. http://doi.org/http://dx.doi.org/10.1016/j.mbs.2012.11.002
Fan K., Zhang Y. & Gao S. (2016). On a new eco-epidemiological model for migratory birds with modified Leslie-Gower functional schemes. Advances in Difference Equations; 97(1). http://doi.org/10.1186/s13662-016-0825-3
Fischer E.A.J., van Roermund H.J.W., Hemerik L., van Asseldonk M.A.P.M. & de Jong M.C.M. (2005). Evaluation of surveillance strategies for bovine tuberculosis (Mycobacterium bovis) using an individual based epidemiological model. Prev Vet Med; 67(4): 283–301. http://doi.org/http://dx.doi.org/10.1016/j.prevetmed.2004.12.002
Gaucel S., Laroche B., Ezanno P., Vergu E. & Touzeau S. (2009). Using singular perturbations to reduce an epidemiological model: Application to bovine viral diarrhoea virus within-herd spread. J Theor Biol; 258(3): 426–436. http://doi.org/http://dx.doi.org/10.1016/j.jtbi.2008.08.011
Hernández M. (2007). Epidemiología: diseño y análisis de estudios. 2nd ed. Editorial Médica Panamericana.
Holko A., Mȩdrek M., Pastuszak Z. & Phusavat K. (2016). Epidemiological modeling with a population density map-based cellular automata simulation system. Expert Systems with Applications; 48: 1–8. http://doi.org/http://dx.doi.org/10.1016/j.eswa.2015.08.018
Kang G.J., Gunaseelan L. & Abbas K.M. (2014). Epidemiological modeling of bovine brucellosis in India. In Big Data (Big Data), IEEE International Conference on 2014; 6–10. http://doi.org/10.1109/BigData.2014.7004420
Kang G., Gunaseelan L. & Abbas K. (2015). Epidemiological dynamics of bovine brucellosis in India. Annals of Global Health; 81(1): 127–128. http://doi.org/http://dx.doi.org/10.1016/j.aogh.2015.02.793
Kar T.K. & Jana S. (2013). A theoretical study on mathematical modelling of an infectious disease with application of optimal control. Biosystems; 111(1): 37–50. http://doi.org/http://dx.doi.org/10.1016/j.biosystems.2012.10.003
Keeling M. J. & Rohani P. (2011). Modeling infectious diseases in Humans and Animals. New Jersey, USA: Princeton University Press. http://www.scopus.com/inward/record.url?eid=2-s2.0 84884049994&partnerID=40&md5=c999c61563de33ed4e8a6171c364ad25. Consultado 20 Jul, 2017.
Kermack W.O. & McKendrick A.G. (1927). A Contribution to the Mathematical Theory of Epidemics. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences; 115(772): 700–721. http://doi.org/10.1098/rspa.1927.0118
Ligarte M.D., Goicoa T., Ibáñez B. & Militino, A.F. (2009). Evaluating the performance of spatio-temporal Bayesian models in disease mapping. Environmetrics; 20(6): 647–665. http://doi.org/10.1002/env.969
Marutschke D.M. & Ogawa H. (2014). Clustering Scientific Publication Trends in Cultural Context Using Epidemiological Model Parameters. Procedia Technology; 18: 90–95. http://doi.org/http://dx.doi.org/10.1016/j.protcy.2014.11.018
Milne C.E., Gunn G.J., Entrican G. & Longbottom D. (2009). Epidemiological modelling of chlamydial abortion in sheep flocks. Vet Microbiol; 135(1–2): 128–133. http://doi.org/http://dx.doi.org/10.1016/j.vetmic.2008.09.032
Morris R.S. (2015). Diseases, dilemmas, decisions—Converting epidemiological dilemmas into successful disease control decisions. Prev Vet Med; 122(1–2): 242–252. http://doi.org/http://dx.doi.org/10.1016/j.prevetmed.2015.05.003
Njagarah J.B. & Nyabadza F. (2014). A metapopulation model for cholera transmission dynamics between communities linked by migration. Applied Mathematics and Computation; 241: 317–331. http://doi.org/http://dx.doi.org/10.1016/j.amc.2014.05.036
Öztürk Y. & Gülsu M. (2015). Numerical solution of a modified epidemiological model for computer viruses. Applied Mathematical Modelling; 39(23–24): 7600–7610. http://doi.org/http://dx.doi.org/10.1016/j.apm.2015.03.023
Pedersen S. (2015). Algunos Modelos matemáticos para (algunas) enfermedades contagiosas: transmisión, infección, tratamiento [Tesis de Licenciatura]. Buenos Aires, Universidad de Buenos Aires.
Pérez J. M. (2010). Inteligencia computacional inspirada en la vida. SPICUM – Universidad de Málaga.
Pittavino M., Ferreri L., Giacobini M., Bertolotti L., Rosati S. & Venturino E. (2014). A CAEV epidemiological model for goat breeding. Applied Mathematics and Computation; 227: 156–163. http://doi.org/http://dx.doi.org/10.1016/j.amc.2013.11.030
Rao D.M. (2016). Efficient parallel simulation of spatially-explicit agent-based epidemiological models. Journal of Parallel and Distributed Computing; 93–94: 102–119. http://doi.org/http://dx.doi.org/10.1016/j.jpdc.2016.04.004
Rist C.L., Ngonghala C.N., Garchitorena A., Brook C.E., Ramananjato R., Miller A.C., et al. (2015). Modeling the burden of poultry disease on the rural poor in Madagascar. One Health; 1: 60–65.
http://doi.org/http://dx.doi.org/10.1016/j.onehlt.2015.10.002
Rodrigues H.S., Monteiro M.T.T. & Torres D.F.M. (2014). Vaccination models and optimal control strategies to dengue. Mathematical Biosciences; 247: 1–12. http://doi.org/http://dx.doi.org/10.1016/j.mbs.2013.10.006
Rossi G., De Leo G.A., Pongolini S., Natalini S., Vincenzi S. & Bolzoni L. (2015). Epidemiological modelling for the assessment of bovine tuberculosis surveillance in the dairy farm network in Emilia-Romagna (Italy). Epidemics; 11: 62–70. http://doi.org/10.1016/j.epidem.2015.02.007
Sahneh F.D., Vajdi A., Melander J. & Scoglio C.M. (2017). Contact Adaption during Epidemics: A Multilayer Network Formulation Approach. IEEE Transaction on Network Science and Engineering. DOI 10.1109/TNSE.2017.2770091
Santman-Berends I.M.G.A., Mars M.H., van Duijn L. & van Schaik G. (2015). Evaluation of the epidemiological and economic consequences of control scenarios for bovine viral diarrhea virus in dairy herds. J Dairy Sci; 98(11): 7699–7716. http://doi.org/http://dx.doi.org/10.3168/jds.2014-9255
Sato A.H., Ito I., Sawai H. & Iwata K. (2015). An epidemic simulation with a delayed stochastic SIR model based on international socioeconomic-technological databases. Big Data (Big Data), 2015 IEEE International Conference on: 2732–2741. http://doi.org/10.1109/BigData.2015.7364074
Savall J.F., Bidot C., Leblanc-Maridor M., Belloc C. & Touzeau S. (2016). Modelling Salmonella transmission among pigs from farm to slaughterhouse: Interplay between management variability and epidemiological uncertainty. Int J Food Microbiol; 229: 33–43. http://doi.org/http://dx.doi.org/10.1016/j.ijfoodmicro.2016.03.020
Sieber M., Malchow H. & Hilker F.M. (2014). Disease-induced modification of prey competition in eco-epidemiological models. Ecological Complexity; 18: 74–82. http://doi.org/10.1016/j.ecocom.2013.06.002
Ssematimba A., Jores J. & Mariner J.C. (2015). Mathematical modelling of the transmission dynamics of contagious bovine pleuropneumonia reveals minimal target profiles for improved vaccines and diagnostic assays. PLoS ONE 2015; 10(2). http://doi.org/10.1371/journal.pone.0116730
Staubach C., Schmid V., Knorr-Held L. & Ziller M. (2002). A Bayesian model for spatial wildlife disease prevalence data. Prev Vet Med; 56(1): 75–87. http://doi.org/10.1016/S0167-5877(02)00125-3
University of Chicago. (1989). Hipócrates. Hippocratic writings. On airs, waters and places. http://classics.mit.edu/Hippocrates/airwatpl.2.2.html. Consultado 23 Jul, 2017.
Van Effelterre T., Marano C. & Jacobsen K.H. (2016). Modeling the hepatitis A epidemiological transition in Thailand. Vaccine; 34(4): 555–562. http://doi.org/http://dx.doi.org/10.1016/j.vaccine.2015.11.052
Van Hulzen K.J.E., Koets A.P., Nielen M., Heuven H.C.M., Van Arendonk J.A.M.& Klinkenberg D. (2014). The effect of genetic selection for Johne’s disease resistance in dairy cattle: Results of a genetic-epidemiological model. J Dairy Sci; 97(3): 1762–1773. http://doi.org/10.3168/jds.2013-7032
Vynnycky E. & White R. (2010). An Introduction to Infectious Disease Modelling. 1nd ed. OUP Oxford.
Weidemann F., Dehnert M., Koch J., Wichmann O. & Höhle M. (2014). Modelling the epidemiological impact of rotavirus vaccination in Germany – A Bayesian approach. Vaccine; 32(40): 5250–5257. http://doi.org/http://dx.doi.org/10.1016/j.vaccine.2014.06.090
Yakob L., Riley T.V., Paterson D.L. & Clements A.C.A. (2013). Clostridium difficile exposure as an insidious source of infection in healthcare settings: An epidemiological model. BMC Infectious Diseases; 13(1). http://doi.org/10.1186/1471-2334-13-376
Zaman G., Kang Y.H. & Jung I.H. (2009). Optimal treatment of an SIR epidemic model with time delay. Biosystems; 98(1): 43–50. http://doi.org/http://dx.doi.org/10.1016/j.biosystems.2009.05.006
Zhang Q., Jiang D., Liu Z., O’Regan D. (2016). Asymptotic behavior of a three species eco-epidemiological model perturbed by white noise. Journal of Mathematical Analysis and Applications; 433(1): 121–148. http://doi.org/http://dx.doi.org/10.1016/j.jmaa.2015.07.025
Copyright (c) 2018 Revista de Investigación Agraria y Ambiental

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
When RIAA receives the postulation of an original by its author, either through email or post mail, considers that it can be published in physical and/or electronic format and facilitates its inclusion in databases, newspaper archives and other systems and indexing process. RIAA authorizes the reproduction and citation of the Journal’s material, provided that explicitly indicates journal name, the authors, the article title, volume, number and pages. The ideas and concepts expressed in the articles are responsibility of the authors and in no case reflect the institutional policies of the UNAD.