Uso de rasgos funcionales de plantas como estimadores de carbono almacenado en biomasa aérea

Palabras clave

ecosistemas tropicales
carbono almacenado en bosques
rasgos funcionales de las plantas.

Cómo citar

Montes-Pulido, C. R. (2014). Uso de rasgos funcionales de plantas como estimadores de carbono almacenado en biomasa aérea. Revista De Investigación Agraria Y Ambiental, 5(2), 237 - 243.


Los métodos utilizados para estimar carbono en ecosistemas tropicales se han fundamentado en el conocimiento de la biomasa aérea seca de los árboles. Ello implica altos costos de extracción y un impacto negativo sobre el ecosistema estudiado. Una posible alternativa a este método es el uso de rasgos funcionales de plantas. En esta investigación se realiza una revisión de publicaciones adelantadas en la aplicación de diversidad funcional a la estimación de carbono almacenado en bosques. Inicialmente se presenta un marco teórico sobre rasgos funcionales, seguido de un análisis sobre cuáles de ellos están asociados con la estimación de carbono. Se identifican los índices de diversidad empleados en los estudios y se concluye planteando estudios futuros relacionados con diversidad funcional y carbono almacenado en bosques.


Ackerly, D. D. & Cornwell, W. K. (2007). A trait‐based approach to community assembly: partitioning of species

trait values into within‐and among‐community components. Ecology letters, 10(2), 135-145.

Baker, T. R., Phillips, O. L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A. & Vásquez Martínez, R. (2004).

Variation in wood density determines spatial patterns inAmazonian forest biomass. Global Change Biology,

(5), 545-562

Bonan, G.B. (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests.

Science, 320, 1444–1449.

Brown, S. (1997). Estimating Biomass and Biomass Change of Tropical Forests: a Primer (FAO Forestry Paper- 134), FAO, United Nations, Rome.

Casanoves, F., Pla, L. & Di Rienzo, J. A. (2011). Valoración y análisis de la diversidad funcional y su relación con los servicios ecosistémicos. Serie técnica, Informe técnico, 384.

Cavanaugh, K. C., Gosnell, J. S., Davis, S. L., Ahumada, J., Boundja, P., Clark, D. B. & Andelman, S. (2014). Carbon storage in tropical forests correlates with taxonomic diversity and functional dominance on a global scale. Global Ecology and Biogeography, 23(5), 563-573.

Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D. & Yamakura, T. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145(1), 87-99.

Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N.G. & Zanne, A. E. (2009). Towards a worldwide wood economics spectrum. Ecology letters 12:351-366.

Ciais, P., Sabine, C., Bala, G. et al. (2013) Carbon and other biogeochemical cycles. Ch. 6, In:Climate Change

: The Physical Science Basis. Working Group Contribu-tion to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.(eds Stocker T, Dahe Q, Plattner G.-K) WMO/UNEP, Geneva.

Conti, G. & Díaz, S. (2013). Plant functional diversity and carbon storage–an empirical test in semi‐arid forest

ecosystems. Journal of Ecology, 101(1), 18-28.

Cornwell, W. K., Cornelissen, J. H., Amatangelo, K., Dorrepaal, E., Eviner, V. T., Godoy, O. & Westoby, M.

(2008). Plant species traits are the predominant control on litter decomposition rates within biomes worldwide.

Ecology letters, 11(10), 1065-1071.

De Bello, F., Lavergne, S., Meynard, C. N., Lepš, J. &

Thuiller, W. (2010). The partitioning of diversity: showing Theseus a way out of the labyrinth. Journal of Vegetation Science, 21(5), 992-1000.

Dı_az, S. & Cabido, M. (2001). Vive la difference: plant functional diversity matters to ecosystem processes.

Trends in Ecology & Evolution, 16(11), 646-655.

Diaz, S., Symstad, A.J., Chapin, F.S. et al. (2003). Functional diversity revealed by removal experiments.

Trends Ecol Evol 18: 140–46.

Díaz, S., Hodgson, J.G., Thompson, K., Cabido, M., Cornelissen, J.H.C. & Jalili, A. (2004). The plant traits

that drive ecosystems: evidence from three continents. Journal of Vegetation Science, 15, 295–304

Díaz, S., Lavorel, S., de Bello, F., Quétier, F., Grigulis, K. & Robson, T. M. (2007). Incorporating plant functional diversity effects in ecosystem service assessments. Proceedings of the National Academy of Sciences, 104(52), 20684-20689.

Díaz, S., Purvis, A., Cornelissen, J. H., Mace, G. M., Donoghue, M. J., Ewers, R. M. & Pearse, W. D. (2013).

Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecology and evolution, 3(9),


Eviner, V.T. & Chapin F. S. (2003). Functional matrix: a conceptual framework for predicting multiple plant

effects on ecosystem processes. Annu Rev Ecol Evol Syst 34:455–485

Falster, D. S., Brännström, Å., Dieckmann, U. & Westoby, M. (2011). Influence of four major plant traits on

average height, leaf‐area cover, net primary productivity, and biomass density in single‐species forests: a theoretical investigation. Journal of Ecology, 99(1),148-164.

Finegan, B., Pena‐Claros, M., Oliveira, A., Ascarrunz, N., Bret‐Harte, M. S., Carreno‐Rocabado, G. & Poorter, L. (2014). Does functional trait diversity predict aboveground biomass and productivity of tropical forests?

Testing three alternative hypotheses. Journal of Ecology, 103(1), 191-201.

Freschet, G.T., Aerts, R. & Cornelissen, J.H.C. (2012). A plant economics spectrum of litter decomposability.

Functional Ecology, 26, 56–65.

Gornish, E. S., & Prather, C. M. (2014). Foliar functional traits that predict plant biomass response to warming.

Journal of Vegetation Science. 25(4), 919-927

Grime, J. P. (2001). Plant strategies, vegetation processes, and ecosystem properties. John Wiley & Sons Ltd.

Chichester, West Sussex, England.

Grime, J.P., Cornelissen, J.H.C., Thompson, K. & Hodgson, J.G. (1996). Evidence of a causal connection etween anti-herbivore defence and the decomposition rate of leaves. Oikos, 77, 489–494

Grime, J.P., Thompson, K., Hunt, R., Hodgson, J.G., Cornelissen, J.H.C., Rorison, I.H. et al. (1997). Integrated

screening validates primary axes of specialisationin plants. Oikos, 79, 259–281

Herms, D.A. & Mattson, W.J. (1992). The dilemma of plants: to grow or defend. The Quarterly Review of Biology, 67, 283–335.

Hooper, D. U., Chapin, F. S., Ewel, J. J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J. H., Lodge, D. M., Loreau, M., Naeem, S., Schmid, B., Setala, H., Symstad, A. J., Vandermeer, J. & Wardle, D. A. (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35

Iglesias, M. D. R., Barchuk, A. & Grilli, M. P. (2012). Carbon storage, community structure and canopy cover: a

comparison along a precipitation gradient. Forest Ecology and Management, 265, 218-229.

Keith, H., Mackey, B.G. & Lindenmayer, D.B. (2009) Reevaluation of forest biomass carbon stocks and lessons from the world’s most carbon-dense forests. Proceedings of the National Academy of Sciences, USA, 106, 11635–11640

Le Quéré C, Andres RJ, Boden T et al. (2012). The global carbon budget 1959– 2011.Earth System Science.

Data Discussions, 5, 1107 – 1157.

Luck GW, Harrington R, Harrison PA, Kremen C, Berry PM, Bugter R, Dawson TP, de Bello F, Dı´az S, Feld

CK, Haslett JR, Hering D, Kontogianni A, Lavorel S, Rounsevell M, Samways MJ, Sandin L, Settele J, Sykes MT, van den Hove S, Vandewalle M. & Zobel, M. (2009) Quantifying the contribution of organisms to the provision of ecosystem services. Bioscience 59:223–235

May, F., Giladi, I., Ristow, M., Ziv, Y. & Jeltsch, F. (2013). Plant functional traits and community assembly along interacting gradients of productivity and fragmentation. Perspectives in Plant Ecology, Evolution and Systematics, 15(6), 304-318.

Moles, A.T., Warton, D.I., Warman, L., Swenson, N.G., Laffan, S.W., Zanne, A.E., Pitman, A., Hemmings, F.A. & Leishman, M.R. (2009) Global patterns in plant height. Journal of Ecology, 97, 923–932.

Mooney, H. & Mace, G. (2009). Biodiversity policy challenges. Science, 325: 1474-11474.

Paquette, A. & Messier, C. (2011). The effect of biodiversity on tree productivity: from temperate to boreal forests. Global Ecology and Biogeography, 20(1), 170-180.

Pan, Y., Birdsey, R., Fang, J. et al.(2011) A large and persistent carbon sink in the world’s forests. Science,

, 988– 992

Phillips, O. L. & Lewis, S. L. (2013). Evaluating the Tropical Forest Carbon Sink. Global change biology. 20(7),


Poorter, H. & Garnier, E. (2007). The ecological significance of variation in relative growth rate and its components. Functional Plant Ecology (eds F. I. Pugnaire & F. Valladares), pp. 67–100. CRC Press, Boca Raton, FL, US

Poorter, H., Niinemets, Ü., Poorter, L., Wright, I.J. & Villar, R. (2009) Causes & consequences of variation in

leaf mass per area (LMA): a meta-analysis. New Phytologist, 182, 565–588

Poorter, H., Niinemets, Ü., Poorter, L., Wright, I. J. & Villar, R. (2009). Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytologist, 182(3), 565-588.

Pichancourt, J. B., Firn, J., Chadès, I. & Martin, T. G. (2014). Growing biodiverse carbon-rich forests. Global

change biology, 20(2), 382-393

Roscher, C., Schumacher, J., Gubsch, M., Lipowsky, A., Weigelt, A., Buchmann, N. & Schulze, E. D. (2012).

Using plant functional traits to explain diversity–productivity relationships. PloS one, 7(5), e36760.

Rüger, N., Wirth, C., Wright, S. J. & Condit, R. (2012). Functional traits explain light and size response of

growth rates in tropical tree species. Ecology, 93(12), 2626-2636.

Ruiz-Jaen, M. C. & Potvin, C. (2011). Can we predict carbon stocks in tropical ecosystems from tree diversity?

Comparing species and functional diversity in a plantation and a natural forest. New Phytologist, 189(4),


Ruiz-Benito, P., Gómez-Aparicio, L., Paquette, A., Messier, C., Kattge, J., & Zavala, M. A. (2014). Diversity increases carbon storage and tree productivity in Spanish forests. Global Ecology and Biogeography, 23(3), 311-322.

Shukla, J. & Mintz, Y. (1982) Influence of land-surface evapotranspiration on the earth’s climate. Science, 215,


Slik, J. W., Paoli, G., McGuire, K., Amaral, I., Barroso, J., Bastian, M., & Tang, J. (2013). Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Global ecology and biogeography, 22(12), 1261-1271.

Swenson, N. G., Erickson, D. L., Mi, X., Bourg, N. A., Forero-Montaña, J., Ge, X. & Kress, W. J. (2012). Phylogenetic and functional alpha and beta diversity in temperate and tropical tree communities. Ecology, 93(sp8), S112-S125.

Violle, C., Navas, M. L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I. & Garnier, E. (2007). Let the concept of

trait be functional!. Oikos, 116(5), 882-892.

Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F. & Villar, R. (2004). The worldwide leaf economics spectrum. Nature, 428(6985),821-827.

Wright, S. J., Kitajima, K., Kraft, N. J., Reich, P. B., Wright, I. J., Bunker, D. E., & Zanne, A. E. (2010).

Functional traits and the growth-mortality trade-off in tropical trees. Ecology, 91(12), 3664-3674.

Ziter, C., Bennett, E. M. & Gonzalez, A. (2013). Functional diversity and management mediate aboveground

carbon stocks in small forest fragments. Ecosphere 4(7):85.

Creative Commons License
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.

Derechos de autor 2016 Revista de Investigación Agraria y Ambiental (RIAA)

Detalle de visitas

PDF: 169
Resumen: 406


La descarga de datos todavía no está disponible.