Potencial antimicrobiano de extractos de plantas medicinales y sus mezclas frente a bacterias asociadas con conjuntivitis
PDF

Palabras clave

conjuntivitis
actividad antimicrobiana
extractos de plantas
staphylococcus
infecciones

Cómo citar

Velasco Garcia, W. J., Pabón Baquero, L. C., & Hernández-Rodríguez, P. (2021). Potencial antimicrobiano de extractos de plantas medicinales y sus mezclas frente a bacterias asociadas con conjuntivitis. Nova, 19(36), 95 - 108. https://doi.org/10.22490/24629448.5294

Resumen

Introducción. La conjuntivitis bacteriana es una de las infecciones oculares con mayor tasa de consulta oftálmica, siendo el género Staphylococcus el agente etiológico que presenta mayor resistencia a los antibióticos. Objetivo. Determinar el potencial antimicrobiano de extractos de plantas medicinales y sus mezclas frente a bacterias asociadas con conjuntivitis. Métodos. A partir de plantas como Belladona, Caléndula, Albahaca, Achiote y Romerillo se prepararon los extractos etanólicos y se evaluó su potencial antibacteriano frente a S. aureus y S. epidermidis, mediante las técnicas de difusión en disco y dilución en tubo. El efecto de las mezclas se determinó para el extracto con mejor actividad y el antibiótico con mayor halo de inhibición a través de la técnica de tablero. Resultados. Se encontró que el extracto con mayor potencial para S. aureus fue el de achiote (hojas) con un halo de inhibición de 13 mm y CMIs de 15 mg/mL, mientras que para S. epidermidis fueron los de hojas y frutos de achiote con halos de 16,6 y 9,6 mm y CMIs de 15 y 30 mg/mL respectivamente. En relación con las combinaciones, el extracto de achiote y ciprofloxacina mostró un efecto de sinergia parcial para S. aureus con una CFI de 0,83 y un efecto aditivo para S. epidermidis con una CFI de 1,84. Conclusiones. Este trabajo se constituye en la base de futuras investigaciones orientadas hacia el desarrollo de bioproductos de uso ocular que puedan ser considerados como alternativa en el tratamiento de infecciones causadas por Staphylococcus.

https://doi.org/10.22490/24629448.5294
PDF

Citas

Alfonso SA, Fawley JD, Lu XA. Conjunctivitis. Prim Care - Clin Off Pract. 2015;42:4543.

Viliani F, Edelstein M, Buckley E, Llamas A, Dar O. Mining and emerging infectious diseases: Results of the Infectious Disease Risk Assessment and Management (IDRAM) initiative pilot. Extr Ind Soc [Internet]. 2017;4(2):251–9. Available from: http://dx.doi.org/10.1016/j.exis.2016.08.009

Khalil RM, Abdelbary GA, Basha M, Awad GEA, el-Hashemy HA. Enhancement of lomefloxacin Hcl ocular efficacy via niosomal encapsulation: in vitro characterization and in vivo evaluation. J Liposome Res. 2017;27(4):312–23.

Ndam LM, Mih AM, Tening AS, Fongod AGN, Temenu NA, Fujii Y. Phytochemical analysis, antimicrobial and antioxidant activities of Euphorbia golondrina L.C. Wheeler (Euphorbiaceae Juss.): an unexplored medicinal herb reported from Cameroon. Springerplus. 2016;5(1).

Everitt HA, Little PS, Smith PWF. A randomised controlled trial of management strategies for acute infective conjunctivitis in general practice. Br Med J. 2006;333(7563):321–4.

Visscher KL, Hutnik CML, Thomas M. Evidence-based treatment of acute infective conjunctivitis: Breaking the cycle of antibiotic prescribing. Can Fam Physician. 2009;55(11):1071–5.

Swe Swe-Han K, Mlisana KP, Pillay M. Analysis of clinical and microbiological data on Acinetobacter baumannii strains assist the preauthorization of antibiotics at the patient level for an effective antibiotic stewardship program. J Infect Public Health [Internet]. 2017;10(5):608–16. Available from: http://dx.doi.org/10.1016/j.jiph.2017.01.0148.

Soliman OAE-A, Mohamed EAM, El-Dahan MS, Khatera NAA. Potential Use of Cyclodextrin Complexes for Enhanced Stability, Anti-inflammatory Efficacy, and Ocular Bioavailability of Loteprednol Etabonate. AAPS PharmSciTech [Internet]. 2016;18(4). Available from: http://dx.doi.org/10.1208/s12249-016-0589-9

Khameneh B, Diab R, Ghazvini K, Fazly Bazzaz BS. Breakthroughs in bacterial resistance mechanisms and the potential ways to combat them. Microb Pathog [Internet]. 2016;95:32–42. Available from: http://dx.doi.org/10.1016/j.micpath.2016.02.009

Carreras B. Análisis bacteriológicos en el tratamiento de las conjuntivitis. Comparación de la resistencia a antibióticos entre 1982 y 2008. Arch Soc Esp Oftalmol [Internet]. 2012;87(4):107–11. Available from: http://dx.doi.org/10.1016/j.oftal.2011.11.017

Esposito S, Canevini MP, Principi N. Complications associated with antibiotic administration: neurological adverse events and interference with antiepileptic drugs. Int J Antimicrob Agents [Internet]. 2017;50(1):1–8. Available from: http://dx.doi.org/10.1016/j.ijantimicag.2017.01.027

Petrovska B. Historical review of medicinal plants usage. Pharmacogn Rev [Internet]. 2012;6(11):1. Available from: http://www.phcogrev.com/text.asp?2012/6/11/1/95849

Tres jota c. Interacción entre fármacos y plantas medicinales. An Sis San Navarra [Internet]. 2006;29(2):1–12. Available from: http://www.zcommunications.org/naked-imperialism-by-john-bellamy-foster

Fonnegra, G. R.; Jiménez RSL. Plantas Medicinales Aprobadas en Colombia. Universidad de Antioquía. 2007;371.

Social. M de la P. Vademécum Colombiano de Plantas Medicinales. 2008;2008. 16. 16. Arango M. Plantas medicinales: botánica de interés médico. Editorial Artes Gráficas Tizán. Colombia; 2006.

Gupta MP. 270 plantas medicinales iberoamericanas. P I D C y Tecnol C A Bello. 1995;1–576.

García Barriga H. Flora medicinal de Colombia: botánica medica. 1974. p. 99.

Gentry A. A Field Guide to the Families and Genera of Woody Plants of Northwest South America (Colombia, Ecuador, Peru). 1996;895.

Dias-Souza MV, dos Santos RM, Cerávolo IP, Cosenza G, Ferreira Marçal PH, Figueiredo FJB. Euterpe oleracea pulp extract: Chemical analyses, antibiofilm activity against Staphylococcus aureus, cytotoxicity and interference on the activity of antimicrobial drugs. Microb Pathog [Internet]. 2018;114(November 2017):29–35. Available from: https://doi.org/10.1016/j.micpath.2017.11.006

Chakraborty S, Afaq N, Singh N, Majumdar S. Antimicrobial activity of Cannabis sativa, Thuja orientalis and Psidium guajava leaf extracts against methicillin-resistant Staphylococcus aureus. J Integr Med [Internet]. 2018;16(5):350–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2095496418300815

Ali Y, Islam MA, Muzahid NH, Sikder MOF, Hossain MA, Marzan LW. Characterization, prevalence and antibiogram study of Staphylococcus aureus in poultry. Asian Pac J Trop Biomed [Internet]. 2017;7(3):253–6. Available from: http://dx.doi.org/10.1016/j.apjtb.2016.12.001

Shi C, Zhao X, Meng R, Liu Z, Zhang G, Guo N. Synergistic antimicrobial effects of nisin and p-Anisaldehyde on Staphylococcus aureus in pasteurized milk. LWT - Food Sci Technol [Internet]. 2017;84:222–30. Available from: http://dx.doi.org/10.1016/j.lwt.2017.05.056

García Beltrán JM, Espinosa C, Guardiola FA, Esteban MÁ. In vitro effects of Origanum vulgare leaf extracts on gilthead seabream (Sparus aurata L.) leucocytes, cytotoxic, bactericidal and antioxidant activities. Fish Shellfish Immunol [Internet]. 2018;79(April):1–10. Available from: https://doi.org/10.1016/j.fsi.2018.05.005

Efstratiou E, Hussain AI, Nigam PS, Moore JE, Ayub MA, Rao JR. Antimicrobial activity of Calendula officinalis petal extracts against fungi, as well as Gram-negative and Gram-positive clinical pathogens. Complement Ther Clin Pract [Internet]. 2012;18(3):173–6. Available from: http://dx.doi.org/10.1016/j.ctcp.2012.02.003

Roopashree TS, Dang R, Shobha Rani RH, Narendra C. Antibacterial activity of antipsoriatic herbs: Cassia tora, Momordica charantia and Calendula officinalis. Int J Appl Res Nat Prod. 2008;1(3):20–8.

Isah T. Stress and defense responses in plant secondary metabolites production. Biol Res. 2019;52(1):39. Published 2019 Jul 29. doi:10.1186/s40659-019-0246-3

Lagarto A, Bueno V, Guerra I, Valdés O, Vega Y, Torres L. Acute and subchronic oral toxicities of Calendula officinalis extract in Wistar rats. Exp Toxicol Pathol. 2011;63(4):387–91.

Farjana A, Md. NZ, Kabir S. Antimicrobial activity of medicinal plant leaf extracts against pathogenic bacteria. Asian Pacific J Trop Dis. 2014;4(14):S920–3.

Meziou-Chebouti N, Merabet A, Behidj N, Bissadd F, Mokadem A, Akkacha N. Antimicrobial Activity of Phenolic Extracts of Flowers Calendula Officinalis Cultivated in Algeria. 14th SGEM Geo-Conference Water Resour For Mar Ocean Ecosyst [Internet]. 2014;2:319-324 pp. Available from: http://dx.doi.org/10.5593/SGEM2014/B32/S14.043%0Ahttps://sgemworld.at/sgemlib/spip.php?article4489

Vora J, Srivastava A, Modi H. Antibacterial and antioxidant strategies for acne treatment through plant extracts. Informatics Med Unlocked [Internet]. 2017;(October):1–5. Available from: http://linkinghub.elsevier.com/retrieve/pii/S2352914817302010

Ortiz DM, Posada SL, Noguera RR. Efecto de metabolitos secundarios de las plantas sobre la emisión entérica de metano en rumiantes. Livest Res Rural Dev. 2014;26(11).

Sharma A, Flores-Vallejo R del C, Cardoso-Taketa A, Villarreal ML. Antibacterial activities of medicinal plants used in Mexican traditional medicine. J Ethnopharmacol [Internet]. 2017;208:264– 329. Available from: http://dx.doi.org/10.1016/j.jep.2016.04.045

Chariandy CM, Seaforth CE, Phelps RH, Pollard G V., Khambay BPS. Screening of medicinal plants from Trinidad and Tobago for antimicrobial and insecticidal properties. J Ethnopharmacol. 1999;64(3):265–70.

Munir N, Iqbal AS, Altaf I, Bashir R, Sharif N, Saleem F, et al. Evaluation of antioxidant and antimicrobial potential of two endangered plant species Atropa belladonna and Matricaria chamomilla. African J Tradit Complement {&} Altern Med. 2014;11:111–7.

Cruz-Galvez AM, Gómez-Aldapa CA, Villagómez-Ibarra JR, Chavarría-Hernández N, Rodríguez-Baños J, Rangel-Vargas E, et al. Antibacterial effect against foodborne bacteria of plants used in traditional medicine in central Mexico: Studies in vitro and in raw beef. Food Control [Internet]. 2013;32(1):289–95. Available from: http://dx.doi.org/10.1016/j.foodcont.2012.12.018

Oliveira DF, Pereira AC, Figueiredo HCP, Carvalho DA, Silva G, Nunes AS, et al. Antibacterial activity of plant extracts from Brazilian southeast region. Fitoterapia. 2007;78(2):142–5.

Bouasla A, Bouasla I. Ethnobotanical survey of medicinal plants in northeastern of Algeria. Phytomedicine, 2017, vol. 36, p. 68-81.

Al-Abbasy DW, Pathare N, Al-Sabahi JN, Khan SA. Chemical composition and antibacterial activity of essential oil isolated from Omani basil (Ocimum basilicum Linn.). Asian Pacific J Trop Dis. 2015;5(8):645–9.

Opalchenova G, Obreshkova D. Comparative studies on the activity of basil--an essential oil from Ocimum basilicum L.--against multidrug resistant clinical isolates of the genera Staphylococcus, Enterococcus and Pseudomonas by using different test methods. JMicrobiolMethods. 2003;54(1):105–10.

Paredes Medina A, Perez Ortiz Z, Palacios Rosales V. Determinación de la actividad antimicrobiana de los frutos del Bixa orellana L . en cepas de Escherichia coli , Staphylococcus aureus , Micrococcus luteus y Klebsiella pneumoniae . Univ Nac Auton Nicar. 2004;1:1–61.

CLSI. Performance Standard for Antimicrobial Susceptibility Testing. Twent Informational Suppl. 2010;M100-S20.

Van den Driessche, F., Brackman, G., Swimberghe, R., Rigole, P., & Coenye T. Screening a repurposing library for potentiators of antibiotics against Staphylococcus aureus biofilms. Int J Antimicrob Agents. 2017;49:315–20.

Penduka D, Mthembu W, Cele KH, Mosa RA, Zobolo AM, Opoku AR. Extracts of Ansellia africana and Platycarpha glomerata exhibit antibacterial activities against some respiratory tract, skin and soft tissue infections implicated bacteria. South African J Bot [Internet]. 2018;116:116–22. Available from: https://doi.org/10.1016/j.sajb.2018.02.403

Peeters L, Argudín M, Azadikhah S, Butaye P. Antimicrobial resistance and population structure of Staphylococcus aureus recovered from pigs farms. Vet Microbiol. 2015;180(1–2):151–6.

Kadry AA, Tawfik AKF, Abu El-Asrar AA, Shibl AM. Elucidation of antibiotic effectiveness against Staphylococcus epidermidis during intraocular lens implantation. Int J Antimicrob Agents. 2001;18(1):55–9.

Osonwa UE, Ugochukwu JI, Ajaegbu EE, Chukwu KI, Azevedo RB, Esimone CO. Enhancement of antibacterial activity of ciprofloxacin hydrochloride by complexation with sodium cholate. Bull Fac Pharmacy, Cairo Univ [Internet]. 2017;55(September): 0–1. Available from: http://www.sciencedirect.com/science/article/pii/S1110093117300443

Choi JG, Choi JY, Mun SH, Kang OH, Bharaj P, Shin DW, et al. Antimicrobial activity and synergism of Sami-Hyanglyun-Hwan with ciprofloxacin against methicillin-resistant Staphylococcus aureus. Asian Pac J Trop Med [Internet]. 2015;8(7):538–42. Available from: http://dx.doi.org/10.1016/j.apjtm.2015.06.010

Wang D, Lu C, Sun F, Cui M, Mu H, Duan J, et al. A tanshinone I derivative enhances the activities of antibiotics against Staphylococcus aureus in vitro and in vivo. Res Microbiol [Internet]. 2017;168(1):46–54. Available from: http://dx.doi.org/10.1016/j.resmic.2016.08.002

Obaidat M, Roess A, Mahasneh A, Al-Hakimi R. Antibiotic-resistance, enterotoxin gene profiles and farm-level prevalence of Staphylococcus aureus in cow, sheep and goat bulk tank milk in Jordan. Int Dairy J [Internet]. 2018;81:28–34. Available from: https://doi.org/10.1016/j.idairyj.2018.02.001

Posadzki P, Watson L, Ernst E. Adverse effects of herbal medicines: an overview of systematic reviews. Clinical medicine, 2013, vol. 13, no 1, p. 7.

Naser J, Awni Abu-Hijleh K. Antibacterial activity of Rosmarinus officinalis L. alone and in combination with cefuroxime against methicillin–resistant Staphylococcus aureus [Internet]. Vol. 3, Asian Pacific Journal of Tropical Medicine. 2010. p. 121–3. Available from: http://www.sciencedirect.com/science/article/pii/S1995764510600491

Torres CA, Nuñez MB, Isla MI, Castro MP, Gonzalez AM, Zampini IC. Antibacterial synergism of extracts from climbers belonging to Bignoniaceae family and commercial antibiotics against multi-resistant bacteria. J Herb Med [Internet]. 2017;8:24–30. Available from: http://dx.doi.org/10.1016/j.hermed.2017.02.002

Teethaisong Y, Pimchan T, Srisawat R, Hobbs G, Eumkeb G. Boesenbergia rotunda (L.) Mansf. extract potentiates the antibacterial activity of some β-lactams against β-lactam-resistant staphylococci.J Glob Antimicrob Resist [Internet]. 2018;12:207–13. Available from: https://doi.org/10.1016/j.jgar.2017.10.019
Creative Commons License
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-SinObrasDerivadas 4.0.

Derechos de autor 2021 Nova

Detalle de visitas

PDF: 2
Resumen: 5