Modelo Animal de Anemia Inducida por Flebotomía Crónica: Relación Funcional Entre Hierro y Eritropoyesis

Autores/as

  • Martha Castillo Bohórquez MSC Universidad Colegio Mayor de Cundinamarca
  • María D´Anna Universidad Nacional del Sur. Bahía Blanca.
  • Suani Gaona Prieto Universidad Colegio Mayor de Cundinamarca
  • Betina García Universidad Nacional del Sur. Bahía Blanca.
  • Gisela Giorgi Universidad Nacional del Sur. Bahía Blanca.
  • Ana Isabel Mora Bautista MSC Universidad Colegio Mayor de Cundinamarca
  • Marta Roque Universidad Nacional del Sur. Bahía Blanca.
  • María del Mar Villarraga Muñoz Universidad Colegio Mayor de Cundinamarca

DOI:

https://doi.org/10.22490/24629448.517

Palabras clave:

anemia, flebotomia crónica, eritropoyesis, estudios hematológicos.

Resumen

En el presente estudio se analizo la respuesta eritropoyética a la anemia inducida por flebotomía crónica y los cambios en la distribución del hierro celular y sistémico del organismo. Ratones hembra de la cepa CF1 (n=32), se dividieron en dos lotes: control y experimental, siguiendo un diseño experimental pareado según su peso. La distribución del hierro en bazo e hígado durante la flebotomía crónica fue evaluada mediante estudios morfológicos y la actividad eritropoyética mediante estudios hematológicos. Las diferencias estadísticas se determinaron mediante Test Student. El nivel de significancia se fijó en p<0,05. Durante la flebotomía crónica se observó una disminución significativa de hemoglobina como indicador de anemia y reticulocitosis como indicador de la restauración del eritron. El bazo de ratón adulto fue el principal tejido que aportó el hierro biodisponible al eritrón, siendo evidente la depleción esplénica del micronutriente. El estudio de la anemia inducida de forma crónica en ratones permitió desarrollar condiciones fisiopatológicas análogas a las observadas en patologías humanas. El modelo de flebotomía crónica fue útil para evaluar la eritropoyesis en la instauración de la anemia y su recuperación, correlacionándola con la distribución de un nutriente esencial como es el hierro.

Biografía del autor/a

Martha Castillo Bohórquez MSC, Universidad Colegio Mayor de Cundinamarca

Universidad Colegio Mayor de Cundinamarca, Facultad de Ciencias de la Salud. Bogotá, Colombia

María D´Anna, Universidad Nacional del Sur. Bahía Blanca.

Biología, Bioquímica y Farmacia. Universidad Nacional del Sur. Bahía Blanca. Argentina

Suani Gaona Prieto, Universidad Colegio Mayor de Cundinamarca

Universidad Colegio Mayor de Cundinamarca, Facultad de Ciencias de la Salud. Bogotá, Colombia

Betina García, Universidad Nacional del Sur. Bahía Blanca.

Biología, Bioquímica y Farmacia. Universidad Nacional del Sur. Bahía Blanca. Argentina

Gisela Giorgi, Universidad Nacional del Sur. Bahía Blanca.

Biología, Bioquímica y Farmacia. Universidad Nacional del Sur. Bahía Blanca. Argentina

Ana Isabel Mora Bautista MSC, Universidad Colegio Mayor de Cundinamarca

Universidad Colegio Mayor de Cundinamarca, Facultad de Ciencias de la Salud. Bogotá, Colombia

Marta Roque, Universidad Nacional del Sur. Bahía Blanca.

Biología, Bioquímica y Farmacia. Universidad Nacional del Sur. Bahía Blanca. Argentina

María del Mar Villarraga Muñoz, Universidad Colegio Mayor de Cundinamarca

Universidad Colegio Mayor de Cundinamarca, Facultad de Ciencias de la Salud. Bogotá, Colombia

Citas

Pérez G, Vittori D, Pregi N, Garbossa G, Nesse A. Homeostasis del hierro. Mecanismos de absorción, captación celular y regulación. Acta Bioquím Clin Latinoam 2005; 39(3): 301-14.

Dunn L, Suryo Y, Richardson D. Iron uptake and metabolism in the new millennium. Trends Cell Biol 2006; 17 (2): 93-100.

Ganz T. Nement E. Regulation of iron acquisition and iron distribution in mammals. Acta Biochim Biophys. 2006; 1763: 690- 9.

Shayeghi M, Latunde-Dada GO, Oakhill JS, Laftah AH, Takeuchi K, Halliday N, et al. Identification of an intestinal heme transporter. Cell 2005; 122: 789-801.

Latunde-Dada GO, Westhuizen JV, Vulpe CD, Anderson GJ, Simpson RJ, McKie AT. Molecular and functional roles of duodenal cytochrome B (Dcytb) in iron metabolism. Blood Cell Mol Dis 2002; 29: 356-60.

Mackenzie B, Garrick MD. Iron imports. II. Iron uptake at the apical membrane in the intestine. Am J Physiol Gastrointest Liver Physiol 2005; 289: 981-6.

Torti FM, Torti S. Regulation of ferritin genes and protein. Blood 2002; 99: 3505-16.

Matsuno T, Mori M, Awai M. Distribution of ferritin and hemosiderin in the liver, spleen and bone marrow of normal, phlebotomized and iron overloaded rats. Acta Med Okayama 1985; 39: 347-60.

D’Anna C, Veuthey T, Roque M. Immunolocalization of Ferroportin in Healthy and Anemic Mice. J Histochem Cytochem. 2009; 57(1): 9– 16.

Abboud S, Haile DJ. A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J Biol Chem 2000; 275: 19906-12.

Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 2004; 306: 2090-3.

Ganz T, Brissot P, Cohen A. Hepcidin and Its Role in Regulating Systemic Iron Metabolism. Am Soc Hematol. 2006; 1: 29- 35.

Muckenthaler M, Galy B, Hentze M. Systemic iron homeostasis and the Ironresponsive element/iron regulatory protein (IRE/IRP) regulatory network. Annu Rev Nutr 2008; 28: 21 9.

Viatte L, Vaulont S. Hepcidin, the iron watcher. Biochimie 2009; 1-6.

Pantapoulos K. Function of the hemochromatosis protein HFE: lessons from animal models. World J Gastroenterol 2008; 14(45): 6893-901

Babitt JL, Huang FW, Xia Y, Sidis Y, Andrews NC, Lin HY. Modulation of bone morphogenetic protein signaling in vivo regulates systemic iron balance. J Clin Invest 2007; 117: 1933-9.

Graham RM, Chua AC, Herbison CE, Olynyk JK, Trinder D. Liver iron transport. World J Gastroenterol 2007; 13: 4725-36.

Tabuchi M, Yanatori I, Kawai Y, Kishi F. Retromer-mediated direct sorting is required for proper endosomal recycling of the mammalian iron transporter DMT1. J Cell Sci 2010; 123:756-6.

Knutson MD, Wessling-Resnick M. Iron metabolism in the reticuloendothelial system. Crit Rev Biochem Mol 2003: 38: 61-88.

Shaw J, Friedman J. Iron Deficiency Anemia: Focus on Infectious Diseases in Lesser Developed Countries. Anemia. 2011; 1- 10.

Roque M, Gatti C, Aggio M. Estudios para evaluar el hierro corporal. Ars Pharm. 2005; 46 (2): 181- 91.

Arribas J, Vallina E. Hematología Clínica Temas de Patología Médica Oviedo. Textos universitarios ediuno. 2005. p 55-8.

Kellera G, Lacauda G, Robertsona S. Development of the hematopoietic system in the mouse. Rev Clin Exp Hematol. 1999; 27: 777– 87.

Guide for the care and use of laboratory animals. National Research Council. Washington DC, 1996.

Fox J, Barthold S, Davisson M, Newcomer C, Quimby F, Smith F. The Mouse in Biomedical Research: Diseases. Ed. ELSEVIER. 2007; p142-50.

Roque M, D´Anna C, Gatti C, Veuthey T. Hematological and Morphological Analysis of the Erythropoietic Regenerative Response in Phenylhydrazine-induced Hemolytic Anemia in Mice. Scand. J. Lab. Anim. Sci. 2008; 35 (3): 181- 90.

D´Anna C, Gatti C, Veuthey T, Sánchez M, Roque M. Eritropoyesis y Esplenectomía en un Modelo Murino. Rev Cientf AMBB. 2006; 16 (4): 88- 9

Camberlein E, Abgueguen E, Fatih N, François Hergaux C, Leroyer P, Turlin B, et al. Hepcidin induction limits mobilisation of splenic iron in a mouse model of secondary iron overload. Elsevier.2002; 339– 46.

Latunde-dada GO, AT McKie & RJ Simpson: Animal models with enhanced erythropoiesis and iron absorption. Biochim Biophys Acta 2006, 1762, 414-423.

Descargas

Publicado

2012-06-15

Cómo citar

Castillo Bohórquez MSC, M., D´Anna, M., Gaona Prieto, S., García, B., Giorgi, G., Mora Bautista MSC, A. I., Roque, M., & Villarraga Muñoz, M. del M. (2012). Modelo Animal de Anemia Inducida por Flebotomía Crónica: Relación Funcional Entre Hierro y Eritropoyesis. Nova, 10(17), 50–63. https://doi.org/10.22490/24629448.517

Número

Sección

Artículo producto de Investigación

Artículos más leídos del mismo autor/a