Modelos de Ensuciamiento en Intercambiadores de Calor Tubulares en Sistemas indirectos en Procesos uHt en la Industria Láctea

Luis Gómez Orozco, Ana Ilva Capera Urrego


La tecnología de ultra alta temperatura (UAT) se utiliza ampliamente en la industria de la leche para el tratamiento térmico, ofreciendo una alta eficiencia en cuanto a la destrucción de microorganismos esporu- lados. Sin embargo, dentro de este proceso se encontró que a temperaturas entre 75°C y 110°C, se llevan a cabo procesos de agregación y desnaturalización de proteínas y precipitación de sales minerales que forman una capa o costra de ensuciamiento en las paredes del tubo de calentamiento; el componente más importante en el fenómeno de ensuciamiento, es la proteína sérica llamada  -Lactoglobulina. En este traba- jo se resumen los diferentes modelos matemáticos que explican el fenómeno de ensuciamiento a partir de la transferencia de masa. La velocidad de ensuciamiento es el resultado de la diferencia entre la velocidad de acumulación de depósitos y la velocidad con que se remueven. Se encontró que los modelos de Kern- Seaton y Fryer-Slater son los más ampliamente usados, pues son modelos de velocidad de ensuciamiento en función de la energía de activación y la temperatura de película interfacial entre la capa de ensucia- miento y la leche. Otros modelos identificados nacen en la industria petroquímica, pero son adaptados en el estudio de la desnaturalización de la proteína de la leche, como los de Ebert-Panchal y Paterson-Fryer.

Texto completo:



L. Deeth and M. Lewis, “Protein stability in sterilized milkand milk products,” Advanced Dairy Chemistry, 2016, pp. 247-286.

K. Grijspeerdt, L. Mortier, J. De Block and R. Van Renterg- hem, “Applications of modelling to optimise ultra high tem- perature milk heat exchangers with respect to fouling,” Food Control, 2004, pp. 117-130.

H. Deeth and N. Datta, “Ultra-High Temperature Treatment (UHT): Heating Systems,” Elseiver, 2011, pp. 699-707.

V. Behera, D. Das and A. Nayak, “Numerical Analysis of tri- ple tube heat exchanger using Ansys,” Journal of Scientific & Engineering research, 2014, pp. 1226-1231.

D. Patel, V. Dhiman and J. Patel, “CFD Analysis of triple tubeconcentric heat exchanger,” Journal of Scientific reserch & Development, 2014, pp. 729-732.

M. Akkerman, “The effect of heating processes on milk whey protein denaturation and rennet coagulation properties,” Te- sis Maestria, 2014.

C. Ebieto and G. Eke, “Parformance Analysis of Shell and Tube Heat Exchangers: A Case Study,” Journal Emerging trends in Engineering and Applied Sciences, 2012, pp. 899-903.

L. Gomez da Cruz, E. Ishiyama, C. Boxler, W. Augustin, S. Scholl and D. Wilson, “Value pricing of surface coating for mitigating heat exchanger fouling,” Food and Bioproducts Processing, 2015, pp. 343-363.

C. Hangsten, A. Altskar, S. Gustafsson, N. Lorén, L. Hamberg, F. Innigs, M. Paulsson and T. Nylander, “Composition and structure of high temperature dairy fouling,” Food Structure, 2016, pp. 13-20.

E. Sadeghinezhad, S. Kazi, M. Dahari, M. Reza, R. Sadri and A. Badarudin, “A comprehensive review of milk fouling on heated surfaces,” Critial reviews in Food Science and nutrition, 2015, pp. 1724-1743.

H. Chen, “Surface Fouling during Heating,” in Encyclope- dia of Agricultural, Food, and Biological, New York, Taylor & Francis, 2011, pp. 1628-1631.

J. Petit, A. Herbig, A. Moreau and G. Delaplace, “Influence of calcium on B-Lactoglobulin denaturation kinetics: Implica- ations in unfolding and aggregation mechanisms,” Journal Dairy Science, 2011, pp. 5794-5810.

S. M. Rodriguez, “Desarrollo de un simulador para analisis y control del ensuciamiento en intercambiadores de calor y tubos,” Universidad de Sevilla, Sevilla España, 2014.

T. Ardsomang, J. Hines and B. Upadhyaya, “Heat exchanger fouling and estimation of remaining useful life,” in Annual con- ference of prognostics and health management society, 2013.

K. Huang and J. Goddard, “Influence of fluid milk product composition on fouling and cleaning of Ni-PTFE modified staniless steel heat exchanger surfaces,” Journal of Food Engineering, 2015, pp. 22-29.

H. Wijayanti, N. Bansal and H. Deeth, “Stability of Whey Protein During Thermal Processing: a Riview,” Comprehensive re- views in Food Science and Food Safety, 2014, pp. 1235-1251.

H. Molina-Perez, J. Cano-Gómez, C. Diaz-Ovalle and F. Castillo-Borja, “Equivalencia del espesor de ensuciamien- to con B-Lg desnaturalizada en el calentamiento de leche,” Avances en Ciencia e ingenieria, 2015, pp. 49-62.

E. WallhauBer, M. A. Hussein and T. Becker, “Detection methods of fouling in heat exchangers in the food industry,” Food Control, pp. 1-10, 2012.

S. Prakash, O. Kravchuk and H. Deeth, “Influence of pre- heat temperature, pre-heat holding time and high-heat tem- perature on fouling of reconstituted skim milk during UHT processing,” Journal of Food Engineering, 2015, pp. 45-52.

A. Mouheb and L. Oufer, “Experimental simulation of the fouling in a cylindrical control by milk,” Journal of Applied Sciences, 2008, pp. 2187-2190.

A. Boolorchi and M. Nasr, “A model for fouling of plate-and- frame heat exchangers in food industry,” Journal of Chemi- cal Engineering, 2011.

I. A. Ansari, M. Sharma and A. K. Datta, “Milk fouling simulation in a double tube heat exchanger,” international commu- nications heat and mass transfer, 2003, pp. 707-716.

T. Britz and R. Robinson, Advanced Dairy Science and Te- chnology, Oxford : Blackwell Publishing, 2008.

E. Wallhauber, W. Hussein, M. Hussein, J. Hinrichs and T. Becker , “On the usage of acoustic properties combined with an artificial neural network - A new approach of deter- mining presence of dairy fouling,” Journal of Food Enginee- ring, 2011, pp. 449-456.

M. Alharthi, Fouling and Cleaning Studies of Protein Fouling at Pasteurisation Temperatures, Birminghan, 2013.

E. Sadeghinezhad, S. Newaz, A. Badarudin, M. Nashrul, M. Zubair, B. Loftizadeh and C. Sean, “A review of milk fouling on heat exchanger surfaces,” rev Chemical Engineering, 2013, pp. 169-188.

J. Petit, A. Moreau, G. Ronse, P. Debreyne, L. Bouvier, P. Blanpain-Avet, R. Jeanter and G. Delaplace, “Role of Whey Components in the Kinetics and Thermodynamics of B- Lactoglobulin Unfolding and Aggregation,” Food Bioprocess Technolgy, 2016.

C. Hangsten, N. Loren, L. Hamberg, J. Wiklund, F. Innings, L. Nilsson, M. Paulsson, C. Tragardh and T. Nylander, “A Novel fouling and cleaning set-up for studying the removal of milk deposits produced during uht-treatement,” in Proceedings of international conference on heat exchangers fouling and cleaning, Budapest, 2013.

F. Karche, M. Weterings and M. Beyrer, “The effect of tem- perature and shear upon technological properties of whey protein concentrate: Aggregation in a tubular heat exchan- ger,” international Dairy Jornal, 2016.

S. Kadam and A. Datta, “Estimation of Thermal Properties and Heat Transfer Study during Continuous Processing of Rice in Milk,” Chemical Engineering Communications, 2015, pp. 345-355.

R. Harche, A. Mouheb and R. Absi, “The fouling in the tubular heat exchanger of algiers refinery,” Heat Mass Transfer, 2015.

A. Chaturvedi, S. Acharya and A. Datta, “Prediction of fou- ling thickness and bulk milk outlet temperature by artificial neural network (ANN) modeling in helical triple tube milk sterilizers,” Proceedings of international conference on heat exchanger fouling and cleaning VIII, 2009, pp. 231-236.

C. Riverol and V. Napolitano, “Estimation of overall heat transfer coefficient in a tubular heat exchanger under fouling using neural networks. Aplication in a flash pas- teurizer,” International Communications Heat and Mass Transfer, 2002.

M. Awad, “Fouling of heat transfer surfaces,” in Heat trans- fer - Theroretical analysis, experimental investigations and industrial systems, Rijeka, Intech, 2011.

P. K. Sahoo, I. A. Ansari and A. K. Datta, “Milk fouling simu- lation in helical triple tube heat exchanger,” Journal of Food Engineering, 2005, pp. 235-244.

P. K. Nema and A. K. Datta, “A computer based solution to check the drop in milk outlet temperature due tu fouling in tubular heat exchanger,” Journal of food engineering, no. 71, 2005, pp. 133-142.

P. K. Sahoo, I. A. Ansari and A. K. Datta, “A computer bases iterative solution for accurate estimation of heat transfer coefficients in a helical tube heat exchanger,” Journal of Food Engineering, 2003, pp. 211-214.

X. Bai, T. Luo, K. Cheng and F. Chai , “Experimental study on fouling in the heat exchangers of surface water heat pumps,” Applead thermal Engineering, 2014, pp. 892-895.

G. Quadir, N. Ahmed and I. Badruddin, “Numerical Investi- gation of the permormance of a triple concentric pipe hea exchanger,” international Journal of Heat of Mass transfer, 2014, pp. 165-172.

M. Ramasamy and U. Deshannavar, “Effect of bulk tempe- rature and heating regime on crude oil fouling: an analysis,” Advanced research Materials, 2014, pp. 189-198.

R. Ornellas do Valle, Determinacao da taxa de incrustacao em trocadores de calor com o auxilio de metodos de otimi- zacao, Rio de Janeiro: COPPE UFRJ, 2012.

H. Muller-Stainhagen, “Heat Transfer Fouling: 50 Years Af- ter the Kern and Seaton Model,” Heat transfer Engineering, 2011, pp. 1-14.

T. Paakkonen , U. Ojaniemi, T. Pattikangas, M. Mannienen, R. Keiski, and C. Simonson, “CFD modelling of calcium carbo- nate crystallization fouling in heat transfer surfaces”, interna- tional Joutnal of Heat and Mass transfer, 2016, pp. 618-630.

F. Coletti, B. Crittenden, A. HAslam, G. Hewitt, G. Jackson, G. Jimenez-Serratos, S. Macchietto, O. Matar, E. Muller, D. Sileri and J.Yang, “Modeling of fouling from molecular to plant scale,” in Crude Oil Fouling, Elevier Inc, 2015, pp. 179-320.

P. Schreier, and P. Fryer, “Heat exchanger fouling: a model study of the scaleup of laboratory data”, Chemical enginee- ring science, 1995, pp. 1311-1321.

P. Nema and A. Datta, “Improved milk fouling simulation in a helical triple tube heat exchanger,” inernational Journal of Heat of Mass transfer, 2006, pp. 3360-3370. [47] S. Sahim, and S. Gulum, “Physical properties of food”, New York: Springer, 2006.

L. Bouvier, A. Moreau, G. Ronse, T. Six, J. Petit and G. Dela- place, “A CFD model as a tool to simulate beta-lactoglobulin heat-indiced denaturation and aggregation in a plate heat ex- changer,” international dairy journal, vol 12, 2002, pp. 285-292.

P. de Jpng, M. de Giggel, H. Straatsma, and M. vissers, “Re- duction of fouling and contamination by predictive kinetic models” Journal of Food Engineering, 2014, pp. 56-63.

A. Srichantra, D. Newstead, O. Maccarthy and A. Paterson, “Effect of preheating on fouling of a pilot scale uht sterilizing plant by recombined, reconstituted and fresh whole milks,” Food and bioproducts precoessing, 2006, pp. 279-285.

C. Boxler , W. Augustin and S. Scholl, “Cleaning of whey protein and milk salts soiled on DLC coated surfaces at high temperature,” Journal of Food Engineering, 2013, pp. 29-38.


Métricas de artículo

Vistas de resumen.
a description of the source 404

Cargando métricas ...

Enlaces refback

  • No hay ningún enlace refback.

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.

Licencia de Creative Commons
Revista Publicaciones e Investigación is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.