Published
How to Cite
Hydrophysical properties of soils of the colombian coffee region and their relationship with parental material
Categories
The hydrophysical properties of the soil play an important role in agricultural production and ecosystem services, and relate to both parental material and bioclimatic conditions and land use. Given the importance of the topic, an investigation was carried out whose objective was to know the relationship between hydrophysical properties and parental material. To fulfill this purpose, 72 coffee farms were selected in Colombia with soils belonging to five parental materials (volcanic ash, intrusive and extrusive igneous rocks, schists and sedimentary) and 22 cartographic units, established by the National Federation of Coffee Growers of Colombia. Soil samples between 10 and 30 cm depth of the profile were taken and particle size distribution, bulk and particle densities (BD and PD), organic matter content (OM), gravimetric moisture retention at 0.33 and 15 bar were determined (MR 0.33 and MR 15), saturated hydraulic conductivity (HC), total porosity (TP) and water storage capacity. Soils from volcanic ash presented lower PD, BD and clay, and higher OM, while derivatives of intrusive igneous exhibited higher PD, BD and sand, and lower OM, silt, MR at 0.33 and 15 bar and HC. The OM influenced PD and BD, and correlated with TP and MR. For most hydrophysical properties, significant differences were found between parental materials. The analysis of canonical discriminating functions, applied to all parental materials, managed to identify them in 65% of cases. When soils from schists and sedimentary rocks were excluded from this analysis, 91% of hits were achieved; the variables with the highest weight were OM, BD, MR, sand and clay.
Abdelbaki, A.M. (2021). Selecting the most suitable pedotransfer functions for estimating saturated hydraulic conductivity according to the available soil inputs. Ain Shams Engineering Journal. https://doi.org/10.1016/j.asej.2021.01.030
Ajayi, A.E., Faloye, O.T., Reinsch, T., y Horn, R. (2021). Changes in soil structure and pore functions under long term/continuous grassland management. Agriculture, Ecosystems & Environment, 314, 107407. https://doi.org/10.1016/j.agee.2021.107407
Amsili, J.P., van Es, H.M., y Schindelbeck, R.R. (2021). Cropping system and soil texture shape soil health outcomes and scoring functions. Soil Security, 4, 100012. https://doi.org/10.1016/j.soisec.2021.100012
Amundson, R. (2021). Soil Biogeochemistry and the Global Agricultural Footprint. Soil Security, 100022. https://doi.org/10.1016/j.soisec.2021.100022
Angst, G., Pokorný, J., Mueller, C. W., Prater, I., Preusser, S., Kandeler, E., Meador, T., Straková, P., Hájek, T., van Buiten, G., y Angst, Š. (2021). Soil texture affects the coupling of litter decomposition and soil organic matter formation. Soil Biology and Biochemistry, 159, 108302. https://doi.org/10.1016/j.soilbio.2021.108302
Banakeng, L.A., Zame, P.Z.O., Tchameni, R., Mamdem, L., y Bitom, D. (2016). Mineralogy and geochemistry of laterites developed on chlorite schists in Tchollire region, North Cameroon. Journal of African Earth Sciences, 119, 264-278. https://doi.org/10.1016/j.jafrearsci.2016.03.007
Barré, P., Durand, H., Chenu, C., Meunier, P., Montagne, D., Castel, G., Billiou, D., Laure Soucémarianadin, L., y Cecillon, L. (2017). Geological control of soil organic carbon and nitrogen stocks at the landscape scale. Geoderma, 285, 50-56. https://doi.org/10.1016/j.geoderma.2016.09.029
Bittelli, M., Tomei, F., Anbazhagan, P., Pallapati, R.R., Mahajan, P., Meisina, C., Bordoni, M., y Valentino, R. (2021). Measurement of soil bulk density and water content with time domain reflectometry: Algorithm implementation and method analysis. Journal of Hydrology, 598, 126389. https://doi.org/10.1016/j.jhydrol.2021.126389
Borrelli, P., Robinson, D.A., Panagos, P., Lugato, E., Yang, J.E., Alewell, C., Wuepper, D., Montanarella, L., y Ballabio, C. (2020). Land use and climate change impacts on global soil erosion by water (2015-2070). Proceedings of the National Academy of Sciences, 117(36), 21994-22001. https://doi.org/10.1073/pnas.2001403117
Bouma, J., y Droogers, P. (1999). Comparing different methods for estimating the soil moisture supply capacity of a soil series subjected to different types of management. Geoderma, 92(3-4), 185-197. https://doi.org/10.1016/S0016-7061(99)00027-0
Bünemann, E.K., Bongiorno, G., Bai, Z., Creamer, R. E., De Deyn, G., de Goede, R., Fleskens, l., Geissen, V., Kuyper, T.W., Mäder, P., Pulleman, M., Sukkel, W., Groenigen, J.W., y Brussaard, L. (2018). Soil quality–A critical review. Soil Biology and Biochemistry, 120, 105-125. https://doi.org/10.1016/j.soilbio.2018.01.030
Cardona, D.A., y Sadeghian, S. (2005). Evaluación de propiedades físicas y químicas de suelos establecidos con café bajo sombra y a plena exposición solar. Revista Cenicafé, 56(4), 348-364. http://biblioteca.cenicafe.org/handle/10778/197
Cline, M.G. (1949). Basic principles of soil classification. Soil Science, 67(2), 81-92.
da Silva, Y.J.A.B., do Nascimento, C.W.A., van Straaten, P., Biondi, C.M., de Souza Júnior, V.S., & da Silva, Y.J.A.B. (2017). Effect of I-and S-type granite parent material mineralogy and geochemistry on soil fertility: A multivariate statistical and Gis-based approach. Catena, 149, 64-72. https://doi.org/10.1016/j.catena.2016.09.001
de Lima, R.P., Rolim, M.M., Toledo, M.P., Tormena, C.A., da Silva, A.R., e Silva, I.A.C., y Pedrosa, E.M. (2022). Texture and degree of compactness effect on the pore size distribution in weathered tropical soils. Soil and Tillage Research, 215, 105215. https://doi.org/10.1016/j.still.2021.105215
de Medeiros, P.S.C., do Nascimento, P., Inda, A.V., y da Silva, L.F. (2020). Genesis and classification of soils from granitic hills in southern Brazil. Journal of South American Earth Sciences, 98, 102494. https://doi.org/10.1016/j.jsames.2019.102494
de Souza, E.R.F., Silva, J.B., Pinto, A.S., y de Faria Lopes, S. (2021). Soil texture and functional traits of trees structure communities of epiphytic mosses in a tropical dry forest. Flora, 283, 151924. https://doi.org/10.1016/j.flora.2021.151924
Erktan, A., Or, D., y Scheu, S. (2020). The physical structure of soil: determinant and consequence of trophic interactions. Soil Biology and Biochemistry, 148, 107876. https://doi.org/10.1016/j.soilbio.2020.107876
Evans, D.L., Quinton, J.N., Tye, A.M., Rodés, Á., Rushton, J.C., Davies, J.A.C., y Mudd, S.M. (2021). How the composition of sandstone matrices affects rates of soil formation. Geoderma, 401, 115337. https://doi.org/10.1016/j.geoderma.2021.115337
Federación Nacional de Cafeteros de Colombia. (1972). Estudio de zonificación y uso potencial del suelo en la zona cafetera del Suroeste de Antioquia. FNC.
Federación Nacional de Cafeteros de Colombia. (1973). Estudio de zonificación y uso potencial del departamento del Tolima. FNC.
Federación Nacional de Cafeteros de Colombia. (1985). Estudio de zonificación y uso potencial del suelo en la zona cafetera del departamento de Huila. FNC.
Federación Nacional de Cafeteros de Colombia. (1986). Estudio de zonificación y uso potencial del suelo en la zona cafetera del departamento de Quindío. FNC.
Federación Nacional de Cafeteros de Colombia. (1988). Estudio de zonificación y uso potencial del suelo en la zona cafetera del departamento de Risaralda. FNC.
Federación Nacional de Cafeteros de Colombia. (1992). Estudio de zonificación y uso potencial del suelo en la zona cafetera del oriente de Antioquia. FNC
Gómez, L., Caballero, A., y Baldión, J.V. (1991). Ecotopos cafeteros de Colombia.
González, H., Sadeghian, S., Zapata, R.D., y Mejía, B. (2008). Fraccionamiento de la materia orgánica en suelos de la zona cafetera de Caldas. Cenicafé 59(4):310-320.
Grunwald, S. (2009). Multi-criteria characterization of recent digital soil mapping and modeling approaches. Geoderma, 152(3-4), 195-207. https://doi.org/10.1016/j.geoderma.2009.06.003
Haddix, M.L., Gregorich, E.G., Helgason, B.L., Janzen, H., Ellert, B.H., y Cotrufo, M.F. (2020). Climate, carbon content, and soil texture control the independent formation and persistence of particulate and mineral-associated organic matter in soil. Geoderma, 363, 114160. https://doi.org/10.1016/j.geoderma.2019.114160
Ilek, A., Kucza, J., y Witek, W. (2019). Using undisturbed soil samples to study how rock fragments and soil macropores affect the hydraulic conductivity of forest stony soils: Some methodological aspects. Journal of hydrology, 570, 132-140. https://doi.org/10.1016/j.jhydrol.2018.12.067
Jenny, H. (1994). Factors of soil formation: a system of quantitative pedology. Courier Corporation.
Jia, L.I.U., Chen, X.F., LI, W.T., Jiang, C.Y., Meng, W.U., Ming, L.I.U., y LI, Z.P. (2021). Bacterial diversity and community composition changes in paddy soils that have different parent materials and fertility levels. Journal of Integrative Agriculture, 20(10), 2797-2806. https://doi.org/10.1016/S2095-3119(20)63364-0
Kashani, M.H., Ghorbani, M.A., Shahabi, M., Naganna, S.R., y Diop, L. (2020). Multiple AI model integration strategy—application to saturated hydraulic conductivity prediction from easily available soil properties. Soil and Tillage Research, 196, 104449. https://doi.org/10.1016/j.still.2019.104449
Lal, R., y Shukla, M.K. (2004). Principles of soil physics. Marcel Dekker, New York. ISBN 0-8247-5324-0. 682 p. https://doi.org/10.1111/j.1365-2389.2005.0756c.x
Li, H., Van den Bulcke, J., Wang, X., Gebremikael, M.T., Hagan, J., De Neve, S., y Sleutel, S. (2020). Soil texture strongly controls exogenous organic matter mineralization indirectly via moisture upon progressive drying—Evidence from incubation experiments. Soil Biology and Biochemistry, 151, 108051. https://doi.org/10.1016/j.soilbio.2020.108051
Lince, L.A., y Sadeghian, S. (2019). Variabilidad espacial de las propiedades físicas de Andisoles en la región cafetera de Colombia. Revista Cenicafé 70(1):65-80.
Lince-Salazar, L.A. (2021). Capacidad de almacenamiento de agua en suelos cultivados en café y otras propiedades edáficas relacionadas. Revista Cenicafé. 72(1): e72101. doi: https://doi.org/10.38141/10778/72101
Lince-Salazar, L. A., Sadeghian-Khalajabadi, S., y Díaz-Poveda, V.C. (2021). Soil vulnerability index to climatic variability in coffee regions of Colombia. Revista de Ciencias Agrícolas, 38(2), 124-143.
Liu, S., Guo, Z. C., Halder, M., Zhang, H.X., Six, J., y Peng, X.H. (2021)a. Impacts of residue quality and soil texture on soil aggregation pathways by using rare earth oxides as tracers. Geoderma, 399, 115114. https://doi.org/10.1016/j.geoderma.2021.115114
Liu, S., Wang, Y., An, Z., Sun, H., Zhang, P., Zhao, Y., Zhou, Z., Xu, L., Zhou, J., y Qi, L. (2021)b. Watershed spatial heterogeneity of soil saturated hydraulic conductivity as affected by landscape unit in the critical zone. CATENA, 203, 105322. https://doi.org/10.1016/j.catena.2021.105322
Lybrand, R.A., y Rasmussen, C. (2018). Climate, topography, and dust influences on the mineral and geochemical evolution of granitic soils in southern Arizona. Geoderma, 314, 245-261. https://doi.org/10.1016/j.geoderma.2017.10.042
Malagón, D. (2003). Ensayo sobre tipología de suelos colombianos -Énfasis en génesis y aspectos ambientales- Rev. Acad. Colomb. Cienc. 27 (104): 319-341. 2003. ISSN 0370-3908.
Martinez, P., y Souza, I. F. (2020). Genesis of pseudo-sand structure in Oxisols from Brazil–A review. Geoderma Regional, 22, e00292. https://doi.org/10.1016/j.geodrs.2020.e00292
Nasta, P., Palladino, M., Sica, B., Pizzolante, A., Trifuoggi, M., Toscanesi, M., Giarra, A., D'Auria, J., Nicodemo, F., Mazzitelli, C., Lazzaro, U., Di Fiore, P. y Romano, N. (2020). Evaluating pedotransfer functions for predicting soil bulk density using hierarchical mapping information in Campania, Italy. Geoderma Regional, 21, e00267. https://doi.org/10.1016/j.geodrs.2020.e00267
Nunes, M.R., Veum, K.S., Parker, P.A., Holan, S.H., Karlen, D.L., Amsili, J.P., van Es, H.M., Wills, S.A., Seybold, C.A., y Moorman, T.B. (2021) The soil health assessment protocol and evaluation applied to soil organic C. Soil Science Society of America Journal. https://doi.org/10.1002/saj2.20244
Panagos, P., Ballabio, C., Poesen, J., Lugato, E., Scarpa, S., Montanarella, L., y Borrelli, P. (2020). A soil erosion indicator for supporting agricultural, environmental and climate policies in the European Union. Remote Sensing, 12(9), 1365. https://doi.org/10.3390/rs12091365
Pandey, B.K., Huang, G., Bhosale, R., Hartman, S., Sturrock, C.J., Jose, L., Martín, O.C., Karady, M., Lynch, J.P., Brown, K., Whalleysacha, W.R., Mooney, J., Zhang, D., y Bennett, M.J. (2021). Plant roots sense soil compaction through restricted ethylene diffusion. Science, 371(6526), 276-280. https://doi.org/10.1126/science.abf3013
Patiño, S., Hernández, Y., Plata, C., Domínguez, I., Daza, M., Oviedo-Ocaña, R., Buytaert, B.F., y Ochoa-Tocachi, B.F. (2021). Influence of land use on hydro-physical soil properties of Andean páramos and its effect on streamflow buffering. CATENA, 202, 105227. https://doi.org/10.1016/j.catena.2021.105227
Phillips, J. D. (2007). Development of texture contrast soils by a combination of bioturbation and translocation. Catena, 70(1), 92-104. https://doi.org/10.1016/j.catena.2006.08.002
Reichert, J.M., da Rosa, V.T., Vogelmann, E.S., da Rosa, D.P., Horn, R., Reinert, D.J., Sattler., A., y Denardin, J.E. (2016). Conceptual framework for capacity and intensity physical soil properties affected by short and long-term (14 years) continuous no-tillage and controlled traffic. Soil and Tillage Research, 158, 123-136. https://doi.org/10.1016/j.still.2015.11.010
Rossiter, D.G. (2021). Are soil phenoforms the new normal? Soil classification and soil mapping in the Anthropocene. Soil Security, 5, 100017. https://doi.org/10.1016/j.soisec.2021.100017
Ruehlmann, J. (2020). Soil particle density as affected by soil texture and soil organic matter: 1. Partitioning of SOM in conceptional fractions and derivation of a variable SOC to SOM conversion factor. Geoderma, 375, 114542. https://doi.org/10.1016/j.geoderma.2020.114542
Sadeghian, S., Salamanca, A., Cardona, D.A., y Hincapié, E. (2010). Indicadores de la calidad del suelo en algunos agroecosistemas de la zona cafetera colombiana. Memorias XII congreso ecuatoriano de la ciencia del suelo, Santo Domingo. CENICAFE. Caldas, Colombia.
Saha, A., Rattan, B., Sekharan, S., y Manna, U. (2020). Quantifying the interactive effect of water absorbing polymer (WAP)-soil texture on plant available water content and irrigation frequency. Geoderma, 368, 114310. https://doi.org/10.1016/j.geoderma.2020.114310
Saifuzzaman, M., Adamchuk, V., Biswas, A., y Rabe, N. (2021). High-density proximal soil sensing data and topographic derivatives to characterise field variability. Biosystems Engineering, 211, 19-34. https://doi.org/10.1016/j.biosystemseng.2021.08.018
Salamanca, A., y Sadeghian, S. (2005). La densidad aparente y su relación con otras propiedades en suelos de la zona cafetera colombiana. Revista Cenicafé, 56(4), 381-397. http://biblioteca.cenicafe.org/handle/10778/163
Salvador, F.M. (2000). Análisis discriminante. [en línea] 5campus.com, Estadística <http://www.5campus.com/leccion/discri. Consultado abril de 2022.
Stevenson, B.A., McNeill, S., y Hewitt, A.E. (2015). Characterising soil quality clusters in relation to land use and soil order in New Zealand: An application of the phenoform concept. Geoderma, 239, 135-142. https://doi.org/10.1016/j.geoderma.2014.10.003
Suárez, S. (1980). Caracterización física de algunos suelos de origen ígneo, metamórfico y sedimentario del Tolima. Centro Nacional de Investigaciones de Café.
Suárez, S., Caballero, R., Chavarriaga, G., y Quevedo, P. (1986). Caracterización física, uso, manejo y conservación de algunos suelos de origen ígneo, metamórfico y sedimentario de la zona cafetera del departamento del Huila. Revista Cenicafé, 37(2), 41-60.
Velde, B. (Ed.). (1995). Origin and mineralogy of clays: clays and the environment. Springer Science Business Media.
Villarreal, R., Lozano, L.A., Salazar, M.P., Bellora, G. L., Melani, E.M., Polich, N., y Soracco, C.G. (2020). Pore system configuration and hydraulic properties. Temporal variation during the crop cycle in different soil types of Argentinean Pampas Region. Soil and Tillage Research, 198, 104528. https://doi.org/10.1016/j.still.2019.104528
Waroszewski, J., Sprafke, T., Kabała, C., Kobierski, M., Kierczak, J., Musztyfaga, E., Loba, A., Mazurek, R., Łabaz, B. (2019). Tracking textural, mineralogical and geochemical signatures in soils developed from basalt-derived materials covered with loess sediments (SW Poland). Geoderma, 337, 983-997. https://doi.org/10.1016/j.geoderma.2018.11.008
Weninger, T., Kreiselmeier, J., Chandrasekhar, P., Julich, S., Feger, KH, Schwärzel, K., Bodner, G., y Schwen, A. (2019). Effects of tillage intensity on pore system and physical quality of silt-textured soils detected by multiple methods. Soil Research, 57(7), 703-711. https://doi.org/10.1071/SR18347
Wilson, M.J. (2019). The importance of parent material in soil classification: A review in a historical context. Catena, 182, 104131. https://doi.org/10.1016/j.catena.2019.104131
Yu, F., y Hunt, A.G. (2018). Predicting soil formation on the basis of transport-limited chemical weathering. Geomorphology, 301, 21-27. https://doi.org/10.1016/j.geomorph.2017.10.027
Zhang, Y., Tigabu, M., Yi, Z., Li, H., Zhuang, Z., Yang, Z., y Ma, X. (2019). Soil parent material and stand development stage effects on labile soil C and N pools in Chinese fir plantations. Geoderma, 338, 247-258. https://doi.org/10.1016/j.geoderma.2018.11.050
Copyright (c) 2022 Revista de Investigación Agraria y Ambiental
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
When RIAA receives the postulation of an original by its author, either through email or post mail, considers that it can be published in physical and/or electronic format and facilitates its inclusion in databases, newspaper archives and other systems and indexing process. RIAA authorizes the reproduction and citation of the Journal’s material, provided that explicitly indicates journal name, the authors, the article title, volume, number and pages. The ideas and concepts expressed in the articles are responsibility of the authors and in no case reflect the institutional policies of the UNAD.