4-nonilfenol: efectos, cuantificación y métodos de remoción en aguas superficiales y potables
Vol. 11 - 1
PDF
HTML

Palabras clave

toxicidad
contaminante
4-nonil fenol
cuantificación

Cómo citar

Doria, G. M., Peñuela, G. A., & Valencia Uribe, G. C. (2019). 4-nonilfenol: efectos, cuantificación y métodos de remoción en aguas superficiales y potables. Revista De Investigación Agraria Y Ambiental, 11(1), 117 - 132. https://doi.org/10.22490/21456453.3235

Resumen

Los contaminantes emergentes constituyen un grupo de sustancias cuya regulación está siendo abordada, debido al incremento de su presencia en cuerpos de agua asociado principalmente a las acciones antropogénicas. Estos compuestos caracterizados como disruptores endocrinos a bajas concentraciones causan daños irreversibles en los ecosistemas y están siendo objeto de estudio especialmente en las últimas dos décadas. Para mitigar su impacto y presencia en los ecosistemas, se han estudiado alternativas para lograr su remoción, basadas en procesos de adsorción, electrocoagulación, filtración por membrana y procesos de oxidación avanzada (AOP). Específicamente el contaminante emergente 4-nonilfenol (4-NF), compuesto perteneciente a la familia de los alquilfenoles, es utilizado como principio activo de tensoactivos no iónicos para uso en detergentes, dispersantes, emulsionantes y solubilizantes, estando presente entre otros, en formulaciones producto de aseo, de plaguicidas y de pinturas, siendo su principal vía de acceso al ambiente a través de aguas residuales. Esta revisión bibliográfica reúne información acerca de algunas propiedades fisicoquímicas del 4-NF, toxicidad, métodos de cuantificación y remoción

https://doi.org/10.22490/21456453.3235
PDF
HTML

Citas

Andreozzi, R. (1999). Advanced oxidation processes (AOP) for water purification and recovery. Catalysis Today, 53(1), p. 51–59.

Asimakopoulos, A. G., & Thomaidis, N. S. (2015). Bisphenol A, 4-t-octylphenol, and 4-nonylphenol determination in serum by Hybrid Solid Phase Extraction-Precipitation Technology technique tailored to liquid chromatography-tandem mass spectrometry. Journal of Chromatography B, (986–987) p. 85–93.

Bechambi, O., Najjar, W., & Sayadi, S. (2016). The nonylphenol degradation under UV irradiation in the presence of Ag-ZnO nanorods: Effect of parameters and degradation pathway. Journal of the Taiwan Institute of Chemical Engineers, (60), p.496–501.

Bokern, M., & Harms, H. H. (1997). Toxicity and metabolism of 4-n-nonylphenol in cell suspension cultures of different plant species. Environmental Science and Technology, 31(7), p.1849–1854.

Bolong, N., Ismail, A. F., Salim, M. R., & Matsuura, T. (2009). A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination, 238(1-3), p. 229–246.

Buitrón, G., Torres-Bojorges, A. X., & Cea-Barcia, G. (2015). Removal of p-nonylphenol isomers using nitrifying sludge in a membrane sequencing batch reactor. Chemical Engineering Journal, (281), p. 860–868.

Cabana, H., Jiwan, J. L. H., Rozenberg, R., Elisashvili, V., Penninckx, M., Agathos, S. N., & Jones, J. P. (2007). Elimination of endocrine disrupting chemicals nonylphenol and bisphenol A and personal care product ingredient triclosan using enzyme preparation from the white rot fungus Coriolopsis polyzona. Chemosphere, 67(4), p.770–778.

Careghini, A., Mastorgio, A. F., Saponaro, S., & Sezenna, E. (2014). Bisphenol A, nonylphenols, benzophenones, and benzotriazoles in soils, groundwater, surface water, sediments, and food: a review. Environmental Science and Pollution Research, (22), p. 5711–5741

Céspedes, R., Skryjová, K., Raková, M., Zeravik, J., Fránek, M., Lacorte, S., & Barceló, D. (2006). Validation of an enzyme-linked immunosorbent assay (ELISA) for the determination of 4-nonylphenol and octylphenol in surface water samples by LC-ESI-MS. Talanta, 70(4), p. 745–751.

Chang, B. V., Chiang, F., & Yuan, S. Y. (2005). Anaerobic degradation of nonylphenol in sludge. Chemosphere, 59(10), p.1415–1420.

Chen, R., Yin, P., Zhao, L., Yu, Q., Hong, A., & Duan, S. (2014). Spatial-temporal distribution and potential ecological risk assessment of nonylphenol and octylphenol in riverine outlets of Pearl River Delta, China. Journal of Environmental Sciences (China), 26(11), p. 2340–2347.

Cheng, G., Sun, M., Yao, L., Wang, L., Sorial, G. A., Xu, X., & Lou, L. (2015). Investigation into the feasibility of black carbon for remediation of nonylphenol polluted sediment through desorption kinetics after different order spiking. Chemosphere, (138), p. 568–575.

Cherniaev, A. P., Kondakova, A. S., & Zyk, E. N. (2016). Contents of 4-Nonylphenol in Surface Sea Water of Amur Bay (Japan/East Sea). Achievements in the Life Sciences 10 (2016) p.65–71.

Czech, T., Bonilla, N. B., Gambus, F., González, R. R., Marín-Sáez, J., Vidal, J. L. M., & Frenich, A. G. (2016). Fast analysis of 4-tertoctylphenol, pentachlorophenol and 4-nonylphenol in river sediments by QuEChERS extraction procedure combined with GC-QqQ-MS/MS. Science of the Total Environment, 557–558 (2016) p.681–687.

Deborde, M., Rabouan, S., Mazellier, P., Duguet, J. P., & Legube, B. (2008). Oxidation of bisphenol A by ozone in aqueous solution. Water Research, 42(16), p.4299–4308.

Diehl, J., Johnson, S. E., Xia, K., West, A., & Tomanek, L. (2012). The distribution of 4-nonylphenol in marine organisms of North American Pacific Coast estuaries. Chemosphere, 87(5), p.490–497.

Diehl, J., Johnson, S. E., Xia, K., West, A., Tomanek, L., Cortazar, E., Shi, W. (2005). Optimization of microwave-assisted extraction for the determination of nonylphenols and phthalate esters in sediment samples and comparison with pressurised solvent extraction. Chemosphere, 223(23), p.5616–5623.

Duan, P., Hu, C., Butler, H. J., Quan, C., Chen, W., Huang, W., Yang, K. (2016). Effects of 4-nonylphenol on spermatogenesis and induction of testicular apoptosis through oxidative stress-related pathways, (62), p.27–38.

Dulov, A., Dulova, N., & Trapido, M. (2013). Photochemical degradation of nonylphenol in aqueous solution: The impact of pH and hydroxyl radical promoters. Journal of Environmental Sciences (China), 25(7), p.1326–1330.

Dzinun, H., Othman, M. H. D., Ismail, A. F., Puteh, M. H., Rahman, M. A., & Jaafar, J. (2016). Photocatalytic degradation of nonylphenol using co-extruded dual-layer hollow fibre membranes incorporated with a different ratio of TiO2/PVDF. Reactive and Functional Polymers, (99), p.80–87.

EPA. (2015). Use of High Throughput Assays and Computational Tools in the Endocrine Disruptor Screening Program. Retrieved from https://www.epa.gov/endocrine-disruption/use-high-throughput-assays-and-computational-tools-endocrine-disruptor#screening.

Fairbairn, D. J., Karpuzcu, M. E., Arnold, W. A., Barber, B. L., Kaufenberg, E. F., Koskinen, W. C., Swackhamer, D. L. (2016). Sources and transport of contaminants of emerging concern: A two-year study of occurrence and spatiotemporal variation in a mixed land use watershed. Science of the Total Environment (551–552) p.605–613.

Fytianos, K. I., Pegiadou, S., Raikos, N., Eleftheriadis, I., & Tsoukali, H. (1997). Determination of Non-Ionic Surfactants (Polyethoxylated-Nonylphenols) By HPLC in Waste Waters Polyethoxylated nonylphenols are important surfactants used commercially for many years as. Science, 35(7), p.1423–1429.

Gil, J., Soto, M., Usma, J., & Gutiérrez, O. (2012). Contaminantes emergentes en aguas, efectos y posibles tratamientos. Producción Más Limpia, 7(2), p. 52–73.

Guenther, K., Heinke, V., Thiele, B., Kleist, E., Prast, H., & Raecker, T. (2002). Endocrine disrupting nonylphenols are ubiquitous in food. Environ. Sci. Technol (36), p.1676-1680.

Guerreiro, A., Soares, A., Piletska, E., Mattiasson, B., & Piletsky, S. (2008). Preliminary evaluation of new polymer matrix for solid-phase extraction of nonylphenol from water samples. Analytica Chimica Acta, 612(1), p.99–104.

Gundersen, J. L. (2001). Separation of isomers of nonylphenol and select nonylphenol polyethoxylates by high-performance liquid chromatography on a graphitic carbon column. Journal of Chromatography A, 914(1-2), p.161–166.

Hsu, F. Y., Wang, Z. Y., & Chang, B. V. (2013). Use of microcapsules with electrostatically immobilized bacterial cells or enzyme extract to remove nonylphenol in wastewater sludge. Chemosphere, 91(6), p.745–750.

Ince, N. H., Gültekin, I., & Tezcanli-Güyer, G. (2009). Sonochemical destruction of nonylphenol: Effects of pH and hydroxyl radical scavengers. Journal of Hazardous Materials, 172(2-3), p.739–743.

Karci, A., Arslan-Alaton, I., & Bekbolet, M. (2013). Advanced oxidation of a commercially important nonionic surfactant: Investigation of degradation products and toxicity. Journal of Hazardous Materials, (263), p.275–282.

Kim, J., Korshin, G. V., & Velichenko, A. B. (2005). Comparative study of electrochemical degradation and ozonation of nonylphenol. Water Research, 39(12), p.2527–2534.

Kostura, B., Škuta, R., Plachá, D., Kukutschová, J., & Matýsek, D. (2015). Mg–Al–CO3 hydrotalcite removal of persistent organic disruptor — Nonylphenol from aqueous solutions. Applied Clay Science, (114), p.234–238.

Kuch, H. M., & Ballschmiter, K. (2001). Determination of endocrine-disrupting phenolic compounds and estrogens in surface and drinking water by HRGC-(NCI)-MS in the picogram per liter range. Environmental Science and Technology, 35(15), p.3201–3206.

Kuzikova, I., Safronova, V., Zaytseva, T., & Medvedeva, N. (2016). Fate and effects of nonylphenol in the filamentous fungus Penicillium expan- sum isolated from the bottom sediments of the Gulf of Finland. Journal of Marine Systems, in press.

Lang, W., Dejma, C., Sirisansaneeyakul, S., & Sakairi, N. (2009). Biosorption of nonylphenol on dead biomass of Rhizopus arrhizus encapsulated in chitosan beads. Bioresource Technology, 100(23), p.5616–5623.

Lee, C. C., Jiang, L. Y., Kuo, Y. L., Hsieh, C. Y., Chen, C. S., & Tien, C. J. (2013). The potential role of water quality parameters on occurrence of nonylphenol and bisphenol A and identification of their discharge sources in the river ecosystems. Chemosphere, 91(7), p.904–911.

Lee, C., Jiang, L., Kuo, Y., Chen, C., Hsieh, C., Hung, C., & Tien, C. (2015). Characteristics of nonylphenol and bisphenol an accumulation by fish and implications for ecological and human health, (502), p. 417–425.

Li, X., Chen, S., Li, L., Quan, X., & Zhao, H. (2014). Electrochemically enhanced adsorption of nonylphenol on carbon nanotubes: Kinetics and isotherms study. Journal of Colloid and Interface Science, (415), p.159–164.

Lin, T., Yu, S., & Chen, W. (2016). Occurrence, removal and risk assessment of pharmaceutical and personal care products (PPCPs) in an advanced drinking water treatment plant (ADWTP) around Taihu Lake in China. Chemosphere, (152), p.1–9.

Loos, R., Hanke, G., Umlauf, G., & Eisenreich, S. J. (2007). LC-MS-MS analysis and occurrence of octyl- and nonylphenol, their ethoxylates and their carboxylates in Belgian and Italian textile industry, wastewater treatment plant effluents and surface waters. Chemosphere, 66(4), p. 690–699.

Lu, J., Jin, Q., He, Y., Wu, J., & Zhao, J. (2008). Biodegradation of nonylphenol polyethoxylates under sulfate-reducing conditions. Science of the Total Environment, 399(1-3), p.121–127.

Lu, Z., & Gan, J. (2014). Analysis, toxicity, occurrence and biodegradation of nonylphenol isomers: A review. Environment International, (73), p.334–345.

Martinez-Zapata, M., Aristizábal, C., & Peñuela, G. (2013). Photodegradation of the endocrine-disrupting chemicals 4n-nonylphenol and triclosan by simulated solar UV irradiation in aqueous solutions with Fe(III) and in the absence/presence of humic acids. Journal of Photochemistry and Photobiology A: Chemistry, (251), p.41–49.

Meador, J. P., Yeh, A., Young, G., & Gallagher, E. P. (2016). Contaminants of emerging concern in a large temperate estuary. Environmental Pollution, (213), p.254–267.

Nakada, N., Tanishima, T., Shinohara, H., Kiri, K., & Takada, H. (2006). Pharmaceutical chemicals and endocrine disrupters in municipal wastewater in Tokyo and their removal during activated sludge treatment. Water Research, 40(17), p.3297–3303.

Naya, S. I., Nikawa, T., Kimura, K., & Tada, H. (2013). Rapid and complete removal of nonylphenol by gold nanoparticle/rutile titanium (IV) oxide plasmon photocatalyst. ACS Catalysis, 3(5), p.903–907.

Ning, B., Graham, N. J. D., & Zhang, Y. (2007). Degradation of octylphenol and nonylphenol by ozone - Part II: Indirect reaction. Chemosphere, 68(6), p.1173–1179.

Noguera-Oviedo, K., & Aga, D. S. (2016). Lessons Learned from more than Two Decades of Research on Emerging Contaminants in the Environment. Journal of Hazardous Materials (316) p.242–251.

Ömeroʇlu, S., Murdoch, F. K., & Sanin, F. D. (2015). Investigation of nonylphenol and nonylphenol ethoxylates in sewage sludge samples from a metropolitan wastewater treatment plant in Turkey. Talanta, (131), p.650–655.

Pan, J., Li, L., Hang, H., Ou, H., Zhang, L., Yan, Y., & Shi, W. (2013). Study on the nonylphenol removal from aqueous solution using magnetic molecularly imprinted polymers based on fly-ash-cenospheres. Chemical Engineering Journal, (223), p.824–832.

Peng, F., Ji, W., Zhu, F., Peng, D., Yang, M., Liu, R., … Yin, L. (2016). A study on phthalate metabolites, bisphenol A and nonylphenol in the urine of Chinese women with unexplained recurrent spontaneous abortion. Environmental Research, in press.

Peng, J., Wang, G., Zhang, D., Zhang, D., & Li, X. (2016). Journal of Photochemistry and Photobiology A: Chemistry Photodegradation of nonylphenol in aqueous solution by simulated solar UV-irradiation: The comprehensive effect of nitrate, ferric ion and bicarbonate, (326), p.9–15.

Pothitou, P., & Voutsa, D. (2008). Endocrine disrupting compounds in municipal and industrial wastewater treatment plants in Northern Greece. Chemosphere, 73(11), p.1716–1723.

Rabouan, S., Dupuis, A., Cariot, A., Albouy-Llaty, M., Migeot, V., Cariot, A.; Legube, B. (2012). Analytical chemistry and metrological issues related to nonylphenols in environmental health. TrAC - Trends in Analytical Chemistry, (37), p.112–123.

Rodgers-gray, T. P., Jobling, S., Morris, S., Kelly, C., Kirby, S., Janbakhsh, A., Tyler, C. R. (2001). Long-term temporal changes in the estrogenic composition of treated sewage ef uent and its biological effects on fish. Environ. Sci. Technol., 34(8), p.1521–1528.

Ros, O., Vallejo, A., Blanco-Zubiaguirre, L., Olivares, M., Delgado, A., Etxebarria, N., & Prieto, A. (2015). Microextraction with polyethersulfone for Bisphenol-A, alkylphenols and hormones determination in water samples by means of gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry analysis. Talanta, (134), p. 247–255.

Sayed, A. E. D. H., Mohamed, N. H., Ismail, M. A., Abdel-Mageed, W. M., & Shoreit, A. A. M. (2016). Antioxidant and antiapoptotic activities of Calotropis procera latex on Catfish (Clarias gariepinus) exposed to toxic 4-nonylphenol. Ecotoxicology and Environmental Safety, (128), p.189–194.

She, Y., Wang, J., Zheng, Y., Cao, W., Wang, R., Dong, F., Wu, L. (2012). Determination of nonylphenol ethoxylate metabolites in vegetables and crops by high performance liquid chromatography-tandem mass spectrometry. Food Chemistry, 132(1), p.502–507.

Shirdel, I., & Kalbassi, M. R. (2016). Effects of nonylphenol on key hormonal balances and histopathology of the endangered Caspian brown trout (Salmo trutta caspius). Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, (183-184), p. 28–35.

Snyder, S. a., Keith, T. L., Verbrugge, D. A., Snyder, E. M., Gross, T. S., Kannan, K., & Giesy, J. P. (1999). Analytical Methods for Detection of Selected Estrogenic Compounds in Aqueous Mixtures. Environmental Science & Technology, 33(16), p.2814–2820.

Soares, A., Guieysse, B., Jefferson, B., Cartmell, E., & Lester, J. N. (2008). Nonylphenol in the environment: A critical review on occurrence, fate, toxicity and treatment in wastewaters. Environment International, 34(7), p.1033–1049.

Sumpter, J. P., & Jobling, S. (1995). Vitellogenesis as a biomarker for estrogenic contamination of the aquatic environment. Environmental Health Perspectives, 103(SUPPL. 7), p.173–178.

Uchiyama, T., Makino, M., Saito, H., Katase, T., & Fujimoto, Y. (2008). Syntheses and estrogenic activity of 4-nonylphenol isomers. Chemosphere, 73(1 SUPPL.), p.60–65.

Verderame, M., Prisco, M., Andreuccetti, P., Aniello, F., & Limatola, E. (2011). Experimentally nonylphenol-polluted diet induces the expression of silent genes VTG and ERα in the liver of male lizard Podarcis sicula. Environmental Pollution, 159(5), p.1101–1107.

Villegas, L. G. C., Mashhadi, N., Chen, M., Mukherjee, D., Taylor, K. E., & Biswas, N. (2016). A Short Review of Techniques for Phenol Removal from Wastewater. Current Pollution Reports, (2)157–167.

Vincent, M. D., & Sneddon, J. (2009). Nonylphenol: An overview and its determination in oysters and wastewaters and preliminary degradation results from laboratory experiments. Microchemical Journal, 92(1), p. 112–118.

Wang, P. W., Chen, M. L., Huang, L. W., Yang, W., Wu, K. Y., & Huang, Y. F. (2015). Prenatal nonylphenol exposure, oxidative and nitrative stress, and birth outcomes: A cohort study in Taiwan. Environmental Pollution, (207), p.145–151.

Xin, Y., Gao, M., Wang, Y., & Ma, D. (2014). Photoelectrocatalytic degradation of 4-nonylphenol in water with WO3/TiO2 nanotube array photoelectrodes. Chemical Engineering Journal, (242), p.162–169.

Xu, L. J., Chu, W., Lee, P. H., & Wang, J. (2016). The mechanism study of efficient degradation of hydrophobic nonylphenol in solution by a chemical-free technology of sonophotolysis. Journal of Hazardous Materials, (308), p.386–393.

Ying, G. G., Kookana, R. S., & Ru, Y. J. (2002). Occurrence and fate of hormone steroids in the environment. Environment International (28) p. 545– 551.

Ying, G.-G., Williams, B., & Kookana, R. (2002). Environmental fate of alkylphenols and alkylphenol ethoxylates--a review. Environment International, 28(3), p.215–226.

Zgoła-Grześkowiak, A., Grześkowiak, T., Rydlichowski, R., & Łukaszewski, Z. (2009). Determination of nonylphenol and short-chained nonylphenol ethoxylates in drain water from an agricultural area. Chemosphere, 75(4), p.513–518.

Zhang, A., & Li, Y. (2014). Removal of phenolic endocrine disrupting compounds from waste activated sludge using UV, H2O2, and UV/H2O2 oxidation processes: Effects of reaction conditions and sludge matrix. Science of the Total Environment, (493), p.

Creative Commons License
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.

Derechos de autor 2020 Revista de Investigación Agraria y Ambiental

Detalle de visitas

PDF: 96
HTML: 132
Resumen: 208

Descargas

La descarga de datos todavía no está disponible.