Publicado: 04-01-2016

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Vehicle recognition by using acoustic signature and classic DSP techniques

Sección
Documentos de Trabajo

Autores/as

María Fernanda Díaz Velásquez
Grupo de Investigación GIEIAM. Universidad Santiago de Cali. Cali, Colombia , Colombia
Jorge Eduardo Guerrero Ramírez
Grupo de Investigación GIEIAM. Universidad Santiago de Cali. , Colombia

This paper shows the application of the classic technique of digital signal processing (DSP), the cross-correlation, used for the detection of acoustic signatures of road traffic in Cali city, Colombia. Future goal is to build a detection software that through real time measures allows us estimate the levels of acoustic pollution in the city by using simulation models of road traffic, in the framework of environmentally-friendly smart cities. Final results of the experimental tests showed an accuracy of 71.43% for specific vehicle detection.

Vehicle recognition by using acoustic signature and classic DSP techniques

Autores/as

  • María Fernanda Díaz Velásquez Grupo de Investigación GIEIAM. Universidad Santiago de Cali. Cali, Colombia
  • Jorge Eduardo Guerrero Ramírez Grupo de Investigación GIEIAM. Universidad Santiago de Cali.

DOI:

https://doi.org/10.22490/21456453.1621

Palabras clave:

Acoustic signature, correlation, vehicle traffic

Resumen

This paper shows the application of the classic technique of digital signal processing (DSP), the cross-correlation, used for the detection of acoustic signatures of road traffic in Cali city, Colombia. Future goal is to build a detection software that through real time measures allows us estimate the levels of acoustic pollution in the city by using simulation models of road traffic, in the framework of environmentally-friendly smart cities. Final results of the experimental tests showed an accuracy of 71.43% for specific vehicle detection.

Biografía del autor/a

María Fernanda Díaz Velásquez, Grupo de Investigación GIEIAM. Universidad Santiago de Cali. Cali, Colombia

Ingeniero Electrónico, Especialista en Redes de Comunicación, Magíster en Ingeniería con énfasis en Ingeniería Electrónica, Doctor en Ingeniería Mecánica

Jorge Eduardo Guerrero Ramírez, Grupo de Investigación GIEIAM. Universidad Santiago de Cali.

Ingeniero Electrónico, Especialista en Redes de Comunicación, Magíster en Ingeniería con énfasis en Ingeniería Electrónica, Estudiante de Doctorado en Ingeniería Mecánica.

Citas

Alcaldía de Santiago de Cali. (2016). Cali en Cifras, Capítulo Generalidades, Información Geográfica. Retrieved from http://www.cali.gov.co/publicaciones/ cali_en_cifras_planeacion_pub

Alesis.com. (2011). Alesis twotrack brochure [Computer software manual]. Retrieved from http:// www.fullcompass.com/common/files/16187-AlesisTwoTrackBrochure.pdf

Europeo, P. (2014). Mapping Smart Cities in the EU (Tech. Rep.). Retrieved from http://www.europarl.europa.eu/RegData/etudes/etudes/join/2014/507480/IPOL-ITRE_ET(2014)507480_EN.pdf

García, B., Francisco, S., & Garrido, J. (2003). La contaminación acústica en nuestras ciudades ( La contaminación acústica en nuestras ciudades). Fundación la Caixa. Retrieved from https://obrasocial.lacaixa.es/ deployed_files/obrasocial/Estaticos/pdf/Estudios_sociales/es12_esp.pdf

Garcia, N. E. (2015). Actualización del mapa de ruido ambiental periodos de tiempo diurno y nocturno entre semana y fin de semana (Tech. Rep.). Santiago de Cali: Pontificia Universidad Javeriana. Retrieved from http:// www.cali.gov.co/salud/publicaciones/mapa_de_ruido_santiago_de_cali_pub

Kandpal, M., Kakar, V. K., & Verma, G. (2013, dec). Classification of ground vehicles using acoustic signal processing and neural network classifier. In Signal processing and communication (icsc), 2013 international conference on (pp. 512–518). doi: 10.1109/ICSPCom.2013.6719846

Lu, B., Dibazar, A., & Berger, T. W. (2008, jun). Non-linear Hebbian Learning for noise-independent vehicle sound recognition. In 2008 ieee international joint conference on neural networks (ieee world congress on computational intelligence) (pp. 1336–1343). doi: 10.1109/IJCNN.2008.4633971

Munich, M. E. (2004, sep). Bayesian subspace methods for acoustic signature recognition of vehicles. In Signal processing conference, 2004 12th european (pp. 2107–2110).

Proakis, J. G., & Manolakis, D. G. (1996). Digital Signal Processing (3rd Ed.): Principles, Algorithms, and Applications. Upper Saddle River, NJ, USA: Prentice-Hall, Inc.

Rahim, N. A., Paulraj, M. P., Adom, A. H., & Sundararaj, S. (2010, may). Moving vehicle noise classification using backpropagation algorithm. In Signal processing and its applications (cspa), 2010 6th international colloquium on (pp. 1–6). doi: 10.1109/CSPA.2010.5545231

Recuero Lopez, M. (1999). Ingeniería acústica. Paraninfo. Retrieved from https://books.google.es/books?id=NsvoAAAACAAJ

Segués, F. (2005). Estrategia de elaboración de un mapa de ruido (Tech. Rep.). Centro de Estudios y Experimentación de Obras Públicas (CEDEX).

Tobías, A., Díaz, J., Recio, A. & Linares, C. (2014). Noise levels and cardiovascular mortality: a case-crossover analysis. European Journal of Preventive Cardiology. doi: 10.1177/2047487314528108

Descargas

Publicado

04-01-2016

Cómo citar

Díaz Velásquez, M. F., & Guerrero Ramírez, J. E. (2016). Vehicle recognition by using acoustic signature and classic DSP techniques. Revista De Investigación Agraria Y Ambiental, 7(1). https://doi.org/10.22490/21456453.1621

Número

Sección

Documentos de Trabajo