Copyright (c) 2023 NOVA Biomedical Sciences Journal

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
NOVA por http://www.unicolmayor.edu.co/publicaciones/index.php/nova se distribuye bajo una licencia Reconocimiento No Comercial- Compartir igual
Así mismo, los autores mantienen sus derechos de propiedad intelectual sobre los artículos,
Declaración de privacidad.
Los nombres y las direcciones de correo electrónico introducidos en esta revista se usarán exclusivamente para los fines establecidos en ella y no se proporcionarán a terceros o para su uso con otros fines.
Chemodrug resistance: Cancer’s fight for survival
Introduction. Chemoresistance is a multifactorial phenomenon implicated in all failed therapies and accounts for 90% of all cancer deaths and 30% of relapses. Objective. To understand the genetic mechanisms by which cancer cells acquire resistance to chemo drugs. Methodology. A non-systematic review study was carried out, in which genes and proteins involved in chemoresistance were searched using the terms “Cancer Drug resis-
tance [Title/Abstract]”. From the articles obtained, highly involved genes, emerging genes, and proteins related to resistance were recognized. To obtain more specific information about genes, their interactions, and proteins associated with metabolism, the tools “The Human Protein Atlas”, “STRING CONSORTIUM 2022,” and The Small Molecule Pa- thway Database were used for their review. Results. From this review it was found that there are genes highly related to resistance such as: ABCA3, ABCB1, ABCB2, ABCC1, ABCC2, ABCG2, CYP2D6, CYP3A4, GSTA1. Recently recognised genes such as: FOXO3,
FOXM1, Skp2, Snail, Twist1, ZEB1 and SLCO1B3. Conclusions. It is necessary to taking account new approaches related to cancer treatments considering chemoresistence and the genes related to the resistence.
