Copyright (c) 2022 NOVA Biomedical Sciences Journal

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
NOVA por http://www.unicolmayor.edu.co/publicaciones/index.php/nova se distribuye bajo una licencia Reconocimiento No Comercial- Compartir igual
Así mismo, los autores mantienen sus derechos de propiedad intelectual sobre los artículos,
Declaración de privacidad.
Los nombres y las direcciones de correo electrónico introducidos en esta revista se usarán exclusivamente para los fines establecidos en ella y no se proporcionarán a terceros o para su uso con otros fines.
Gene silencing in pest insects that affect the agricultural industry using interference RNA
Pest insects are species of living organisms that are constantly found in high populations, causing economic crops damage. Generally, it tends to be specific species, usually only one or two, which can cause great economic damage in the agricultural sector. In the last 3 decades, the concept of a biological process has been developed, widely detected in eukaryotes, by which genes can be silenced, from double-stranded RNA (dsRNA). This machinery has been investigated to understand its operation and to look for potential applications that it could have in the field of biotechnology. In several studies it was found that gene silencing is due to cytoplasmic intracellular enzymatic interactions with small RNA molecules (siRNA), which act on intracellular messenger RNA (mRNA), preventing it from translating a protein. Through this mechanism, the aim is to silence specific genes in pest insects, which are essential for the insect to live and thus prevent the proliferation of the pest. This article compiles the studies carried out on RNA interference, referring to the genetic mechanism of insects, as an alternative for its control.
Napoli C, Lemieux C, Jorgensen R. Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans. Plant Cell [Internet]. 1990 [cited 2020 Apr25];2(4):279–89. Available from: http://www.plantcell.org/content/2/4/279
Romano N, Macino G. Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol Microbiol [Internet]. 1992 [cited 2020 Apr25];6(22):3343–53. Available from: https://www.ncbi.nlm.nih.gov/pubmed/1484489
Guo S, Kemphues KJ. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell [Internet]. 1995 May [cited 2020 Apr25];81(4):611–20. Available from: https://www.ncbi.nlm.nih.gov/pubmed/7758115
Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans.Nature [Internet]. 1998 Feb [cited 2020 Apr25];391(6669):806–11. Available from: https://pubmed.ncbi.nlm.nih.gov/9486653/
Hamilton AJ, Baulcombe DC. A Species of Small Antisense RNA in Posttranscriptional Gene Silencing in Plants. Science (80- ) [Internet]. 1999 Oct 29 [cited 2020 Apr 25];286(5441):950 LP – 952. Available from:http://science.sciencemag.org/content/286/5441/950.abstract
Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature [Internet]. 2001 Jan [cited 2020 Apr25];409(6818):363–6. Available from: https://pubmed.ncbi.nlm.nih.gov/11201747/
Barrón C. Implicaciones Fisiopatológicas De Los Rna De Interferencia [Internet]. Universidad Complutense. 2020-04-29; 2017. Available from: https://eprints.ucm.es/id/eprint/55569/1/CARMEN%20BARRON%20GARCIA.pdf
Haley B, Tang G, Zamore PD. In vitro analysis of RNA interference in Drosophila melanogaster. Methods[Internet]. 2003 [cited 2020 Apr 29];30(4):330–6.Available from: http://www.sciencedirect.com/science/article/pii/S1046202303000525
Rana TM. Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol [Internet]. 2007 Jan [cited 2020 Apr 29];8(1):23–Available from: https://pubmed.ncbi.nlm.nih. gov/17183358/
Iwasaki YW, Siomi MC, Siomi H. PIWI-Interacting RNA: Its Biogenesis and Functions. Annu Rev Biochem [Internet]. 2015 Jun 2 [cited 2020 Apr 29];84(1):405–33.Available from: https://doi.org/10.1146/annurevbiochem-060614-034258
Yigit E, Batista PJ, Bei Y, Pang KM, Chen C-CG, Tolia NH, et al. Analysis of the C. elegans Argonaute FamilyReveals that Distinct Argonautes Act Sequentiallyduring RNAi. Cell [Internet]. 2006 Nov 17 [cited 2020Apr 29];127(4):747–57. Available from: https://doi.org/10.1016/j.cell.2006.09.033 & Wolfman LSBA. Small interfering RNA inducedknockdown of green fluorescent protein using syntheticRNA molecules. J Chem Inf Model [Internet].2013;53(9):1689–99. Available from: http://elfosscientiae.cigb.edu.cu/PDFs/Biotecnol Apl/2007/24/1/BA002401OL049-052.pdf
Doench JG, Sharp PA. Specificity of microRNA target selection in translational repression. Genes Dev [Internet]. 2004/03/10. 2004 Mar 1 [cited 2020 Apr 29];18(5):504–Available from: https://pubmed.ncbi.nlm.nih.gov/15014042
Guerra JJL, Arjona LG. ARN interferente: una herramienta y un novedoso mecanismo de regulación génica. Científico Estud las Ciencias Médicas Cuba [Internet]. 2008 [cited 2020 Apr 29]; Available from:http://www.16deabril.sld.cu/rev/235/04.html
Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, et al. Dicer is essential for mouse development. Nat Genet [Internet]. 2003 [cited 2020 Apr29];35(3):215–7. Available from: https://doi.org/10.1038/ng1253
Novina CD, Sharp PA. The RNAi revolution. [Internet]. Vol. 430, Nature. England; 2004 [cited 2020 Apr 29]. p. 161–4. Available from: https://pubmed.ncbi.nlm.nih.gov/15241403/
Sijen T, Vijn I, Rebocho A, van Blokland R, Roelofs D, Mol JNM, et al. Transcriptional and posttranscriptionalgene silencing are mechanistically related. Curr Biol[Internet]. 2001 [cited 2020 Apr 29];11(6):436–40. Available from: http://www.sciencedirect.com/science/ article/pii/S0960982201001166
Kole R, Krainer AR, Altman S. RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov [Internet]. 2012 Jan [cited 2020 Apr 30];11(2):125–40. Available from: https://pubmed.ncbi. nlm.nih.gov/22262036/
Ahmed I, Ahmed Tipu S, Ishtiaq S. Malignant mesothelioma. Pakistan J Med Sci [Internet]. 2013 Nov [cited 2020 Apr 30];29(6):1433–8. Available from:https://pubmed.ncbi.nlm.nih.gov/24550969
Cotes AM. Control biológico de fitopatógenos, insectos y ácaros [Internet]. Vol. 1. 2018 [cited 2020 Apr 30]. Available from: http://editorial.agrosavia.co/index.php/ publicaciones/catalog/download/23/14/313-1?inline=1
Sen GL, Blau HM. A brief history of RNAi: the silence of the genes. FASEB J [Internet]. 2006 Jul 1 [cited 2020 Apr 30];20(9):1293–9. Available from: https://doi.org/10.1096/fj.06-6014rev
Röther S, Meister G. Small RNAs derived from longer non-coding RNAs. Biochimie [Internet]. 2011 Nov [cited 2020 Apr 30];93(11):1905–15. Available from:https://pubmed.ncbi.nlm.nih.gov/21843590/
Borovsky D. Insect peptide hormones and RNAMediated interference (RNAi): Promising technologies for future plant protection. Phytoparasitica [Internet]. 2005 Mar 1 [cited 2020 Apr 30];33:109–12. Available from: https://www.researchgate.net/ publication/298552487_Insect_peptide_hormones_and_RNA-Mediated_interference_RNAi_Promising_technologies_for_future_plant_protection
Chaves B, Riley J. Determination of factors influencing integrated pest management adoption in coffee berry borer in Colombian farms. Agric Ecosyst Environ [Internet]. 2001 [cited 2020 Apr 30];87(2):159–77.Available from: http://www.sciencedirect.com/science/article/pii/S0167880901002766
Baker, P. La broca del café en Colombia; informe final del proyecto MIP para el café DFID-CenicaféCABI BioScience. Colomb Entomol [Internet]. 1999 [cited 2020 May 1];32(2):101–16. Available from: http://webcache.googleusercontent.com/search?q=cache:YKIKNgR49LcJ:www.scielo.org.co/pdf/rcen/v32n2/v32n2a01.pdf+&cd=2&hl=es&ct=clnk&gl=co 25
Huvenne H, Smagghe G. Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review. J Insect Physiol [Internet]. 2010 Mar [cited 2020 May 1];56(3):227–35. Available from: https://pubmed. ncbi.nlm.nih.gov/19837076/#:~:text=Abstract,anddigestion in its midgut.
Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P, Ilagan O, et al. Control of coleopteran insect pests through RNA interference. Nat Biotechnol [Internet]. 2007 [cited 2020 May 1];25(11):1322–6. Available from: https://doi.org/10.1038/nbt1359
Bautista MAM, Miyata T, Miura K, Tanaka T. RNA interference-mediated knockdown of a cytochrome P450, CYP6BG1, from the diamondback moth, Plutella xylostella, reduces larval resistance to permethrin. Insect Biochem Mol Biol [Internet]. 2009 [cited 2020 May 1];39(1):38–46. Available from:http://www.sciencedirect.com/science/article/pii/S0965174808001732
Aguilera G. C, Padilla H. BE, Flórez R. CP, Rubio G. JD, Acuña Z. JR. ARN interferente: Potenciales usos en genómica funcional y control genético de Hypothenemus hampei (Coleoptera: Scolytinae)[Internet]. Vol. 37, Revista Colombiana de Entomología. scieloco; 2011 [cited 2020 May 1]. p. 167–72. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-04882011000200001&lng=es
Head GP, Carroll MW, Evans SP, Rule DM, Willse AR, Clark TL, et al. Evaluation of SmartStax and SmartStax PRO maize against western corn rootworm and northern corn rootworm: efficacy and resistance management. Pest Manag Sci [Internet]. 2017 Sep [cited 2020 Aug 24];73(9):1883–99. Available from: https://pubmed.ncbi.nlm.nih.gov/28195683/
Turner CT, Davy MW, MacDiarmid RM, Plummer KM, Birch NP, Newcomb RD. RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double-stranded RNA feeding. Insect Mol Biol [Internet]. 2006 Jun [cited 2020 May 1];15(3):383–Available from: https://pubmed.ncbi.nlm.nih. gov/16756557/
Saleh M-C, van Rij RP, Hekele A, Gillis A, Foley E, O’Farrell PH, et al. The endocytic pathway mediates cell entry of dsRNA to induce RNAi silencing. Nat Cell Biol [Internet]. 2006 [cited 2020 May 1];8(8):793–802. Available from: https://doi.org/10.1038/ncb1439
Wynant N, Santos D, Vanden Broeck J. Biological mechanisms determining the success of RNA interference in insects. Int Rev Cell Mol Biol [Internet]. 2014 [cited 2020 May 1];312:139–67. Available from: https://pubmed.ncbi.nlm.nih.gov/25262241/
Karlikow M, Goic B, Mongelli V, Salles A, Schmitt C, Bonne I, et al. Drosophila cells use nanotube-like structures to transfer dsRNA and RNAi machinery between cells. Sci Rep [Internet]. 2016 [cited 2020 May 1];6(June):1–9. Available from: http://dx.doi.org/10.1038/srep27085
Tassetto M, Kunitomi M, Andino R. Circulating Immune Cells Mediate a Systemic RNAi-Based Adaptive Antiviral Response in Drosophila. Cell [Internet]. 2017 Apr [cited 2020 May 1];169(2):314-325.e13. Available from: https://pubmed.ncbi.nlm.nih.gov/28388413/
Vogel E, Santos D, Mingels L, Verdonckt T-W, Broeck J Vanden. RNA Interference in Insects: Protecting Beneficials and Controlling Pests [Internet]. Vol. 9, Frontiers in Physiology. 2019 [cited 2020 May 1]. p. 1912. Available from: https://www.frontiersin.org/article/10.3389/fphys.2018.01912
Wuriyanghan H, Rosa C, Falk BW. Oral Delivery of Double-Stranded RNAs and siRNAs Induces RNAi Effects in the Potato/Tomato Psyllid, Bactericerca cockerelli. PLoS One [Internet]. 2011 Nov 16 [cited2020 Aug 24];6(11):e27736. Available from: https://doi.org/10.1371/journal.pone.0027736
Xiong Y, Zeng H, Zhang Y, Xu D, Qiu D. Silencing the HaHR3 gene by transgenic plant-mediated RNAi to disrupt Helicoverpa armigera development. Int J Biol Sci [Internet]. 2013 Apr 23 [cited 2020 Aug 24];9(4):370–Available from: https://pubmed.ncbi.nlm.nih. gov/23630449
Wu K-M, Lu Y-H, Feng H-Q, Jiang Y-Y, Zhao J-Z. Suppression of Cotton Bollworm in Multiple Crops in China in Areas with Bt Toxin–Containing Cotton. Science (80- ) [Internet]. 2008 Sep 19 [cited 2020 Aug24];321(5896):1676 LP – 1678. Available from: http://science.sciencemag.org/content/321/5896/1676.abstract
Noriega D, Valencia A, Villegas B. ARN de interferencia (ARNi): una tecnología novedosa con potencial para el control de insectos plaga. Rev UDCA Actual Divulg Científica [Internet]. 2016 [cited 2020 Sep 10];19(1):25–35. Available from: http://www.scielo.org.co/pdf/rudca/v19n1/v19n1a04.pdf
Kumar P, Pandit SS, Baldwin IT. Tobacco Rattle Virus Vector: A Rapid and Transient Means of Silencing Manduca sexta Genes by Plant Mediated RNA Interference. PLoS One [Internet]. 2012 Feb 1 [cited 2020 Sep 10];7(2):e31347. Available from: https://doi.org/10.1371/journal.pone.0031347
Gong L, Chen Y, Hu Z, Hu M. Testing Insecticidal Activity of Novel Chemically Synthesized siRNA against Plutella xylostella under Laboratory and Field Conditions. PLoS One [Internet]. 2013 May 7 [cited 2020 Sep 10];8(5):e62990. Available from: https://doi. org/10.1371/journal.pone.0062990
Sáenz A. Susceptibilidad de plutella xylostella a heterorhabditis sp. SL0708 (Rhabditida: Heterorhabditidae). Rev Colomb Entomol [Internet]. 2012 [cited 2020 Sep 10];38(1):94–6. Available from: http://www.scielo.org.co/pdf/rcen/v38n1/v38n1a16.pdf
Deise Cagliari, Ericmar Avila dos Santos, Naymã Dias GS and MZ. Nontransformative Strategies for RNAi in Crop Protection. In 2018 [cited 2020 Sep 10]. p. 1–18. Available from: https://www.intechopen.com/books/ modulating-gene-expression-abridging-the-rnai-andcrispr-cas9-technologies/nontransformative-strategies-forrnai-in-crop-protection
Šafářová D, Brázda P, Navrátil M. Effect of artificial dsRNA on infection of pea plants by pea seedborne mosaic virus. Czech J Genet Plant Breed [Internet]. 2014 [cited 2020 Sep 10];50(2):105–8. Available from: https://www.agriculturejournals.cz/ publicFiles/120_2013-CJGPB.pdf
Preall JB, Sontheimer EJ. RNAi: RISC Gets Loaded. Cell [Internet]. 2005 [cited 2020 Sep 10];123(4):543–5. Available from: http://www.sciencedirect.com/science/article/pii/S0092867405011645
Lippman Z, Martienssen R. The role of RNA interference in heterochromatic silencing. Nature [Internet]. 2004 [cited 2020 Sep 10];431(7006):364–70. Available from:https://doi.org/10.1038/nature02875
Feinberg EH, Hunter CP. Transport of dsRNA into cells by the transmembrane protein SID-1. Science [Internet].2003 Sep [cited 2020 Sep 12];301(5639):1545–7. Available from: https://pubmed.ncbi.nlm.nih.gov/12970568/#:~:text=Here%2C we demonstrate that SID,that systemic RNAi in C
Borgio JF. RNAi mediated gene knockdown in sucking and chewing insect pests. J Biopestic [Internet]. 2010 [cited 2020 Sep 12];3(1):386–93. Available from: https://www.cabdirect.org/cabdirect/abstract/20133182520
Koch A, Biedenkopf D, Furch A, Weber L, Rossbach O, Abdellatef E, et al. An RNAi-Based Control of Fusariumgraminearum Infections Through Spraying of Long dsRNAs Involves a Plant Passage and Is Controlled by the Fungal Silencing Machinery. PLOS Pathog [Internet]. 2016 Oct 13 [cited 2020 Sep 12];12(10):e1005901. Available from: https://doi.org/10.1371/journal. ppat.1005901
Wang M, Thomas N, Jin H. Cross-kingdom RNA trafficking and environmental RNAi for powerful innovative pre- and post-harvest plant protection. Curr Opin Plant Biol [Internet]. 2017/05/29. 2017 Aug [cited 2020 Sep 12];38:133–41. Available from: https:// pubmed.ncbi.nlm.nih.gov/28570950
Cagliari D, Dias NP, Galdeano DM, dos Santos EÁ, Smagghe G, Zotti MJ. Management of Pest Insects and Plant Diseases by Non-Transformative RNAi [Internet]. Vol. 10, Frontiers in Plant Science. 2019. p. 1319. Available from: https://www.frontiersin.org/article/10.3389/fpls.2019.01319
Copyright (c) 2022 NOVA Biomedical Sciences Journal

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
NOVA por http://www.unicolmayor.edu.co/publicaciones/index.php/nova se distribuye bajo una licencia Reconocimiento No Comercial- Compartir igual
Así mismo, los autores mantienen sus derechos de propiedad intelectual sobre los artículos,
Declaración de privacidad.
Los nombres y las direcciones de correo electrónico introducidos en esta revista se usarán exclusivamente para los fines establecidos en ella y no se proporcionarán a terceros o para su uso con otros fines.