Derechos de autor 2022 Nova

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
NOVA por http://www.unicolmayor.edu.co/publicaciones/index.php/nova se distribuye bajo una licencia Reconocimiento No Comercial- Compartir igual
Así mismo, los autores mantienen sus derechos de propiedad intelectual sobre los artículos,
Declaración de privacidad.
Los nombres y las direcciones de correo electrónico introducidos en esta revista se usarán exclusivamente para los fines establecidos en ella y no se proporcionarán a terceros o para su uso con otros fines.
Enfermedad mínima residual por citometría de flujo en pacientes con leucemia linfoblástica aguda
Antecedentes. La citometría de flujo (CMF) es una técnica que permite el análisis multiparamétrico de poblaciones celulares, siendo esencial en la investigación biomédica y como herramienta diagnóstica. Esta técnica rápida tiene una alta sensibilidad, evaluando
características en la población de interés como es el caso del tamaño, granularidad, complejidad del citoplasma celular y proteínas de que permiten la clasificación fenotípica y funcional de un gran número de células. Por estas razones, esta técnica ha adquirido
importancia en el diagnóstico y seguimiento de enfermedades y anomalías hematológicas, como leucemias, síndromes mielodisplásicos y síndromes mieloproliferativos, entre otras. Objetivo. La presente revisión se enfoca en los avances en la implementación de la CMF en la Enfermedad Mínima Residual (EMR) presente en la Leucemia Linfoblástica Aguda (LLA), la cual es una población mínima leucémica que se detecta en un paciente después de suministrar un tratamiento oncológico, donde se evalúa su eficacia, el riesgo de una recaída y el proceso de remisión completa. Metodología. Se realiza una revisión no sistemática de
literatura en bases de datos, de los últimos 15 años, donde evalúen las implicaciones del uso de citometría de flujo en la EMR, de esta revisión se extraen aspectos relevantes al momento de emplear la CMF para el diagnóstico y seguimiento de pacientes con leucemias. Resultados. La CMF es una técnica muy versátil e importante para el diagnóstico y seguimiento de la EMR por su alta sensibilidad para la detección de bajos números de células resistentes a la terapia. Adicionalmente se muestra la importancia de la estandarización de protocolos como EUROFLOW para un adecuado procesamiento y análisis clínico de las muestras de pacientes.
Instituto Nacional de Salud. Comportamiento epidemiológico de cáncer en menores de 18 años , periodo 2015 a 2020 , Colombia [Internet]. Boletín Epidemiologico Semanal. 2021. Available from: https://www.ins.gov.co/buscador-eventos/BoletinEpidemiologico/2021_Boletin_epidemiologico_semana_5.pdf
Villalba Toquica C del P, Martínez Silva PA, Acero H. Caracterización clínico-epidemiológica de los pacientes pediátricos con leucemias agudas en la Clínica Universitaria Colombia. Serie de casos 2011-2014. Pediatria (Santiago) [Internet]. 2016;49(1):17–22. Available from: http://dx.doi.org/10.1016/j.rcpe.2016.01.002
Gacha Garay MJ, Akle V, Enciso L, Garavito Aguilar ZV. La leucemia linfoblástica aguda y modelos animales alternativos para su estudio en Colombia. Rev Colomb Cancerol [Internet]. 2017;21(4):212–24. Available from: https://www.revistacancercol.org/index.php/cancer/article/view/182
Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood [Internet]. 2016;127(20):2391– 405. Available from: https://ashpublications.org/blood/article/127/20/2391/35255/The-2016-revision-to-the-World-Health-Organization
Grimwade LF, Fuller KA, Erber WN. Applications of imaging flow cytometry in the diagnostic assessment of acute leukaemia. Methods [Internet]. 2017;112:39– 45. Available from: http://dx.doi.org/10.1016/j.ymeth.2016.06.023
Berry DA, Zhou S, Higley H, Mukundan L, Fu S, Reaman GH, et al. Association of minimal residual disease with clinical outcome in pediatric and adult acute lymphoblastic leukemia: A meta-analysis. JAMA Oncol [Internet]. 2017;3(7):1–9. Available from: https://jamanetwork.com/journals/jamaoncology/fullarticle/2626509
Moorman A V. New and emerging prognostic and predictive genetic biomarkers in B-cell precursor acute lymphoblastic leukemia. Haematologica [Internet]. 2016 Apr;101(4):407–16. Available from: http://www.haematologica.org/lookup/doi/10.3324/haematol.2015.141101
Sabath DE. Minimal Residual Disease. Leuk Lymphoma Soc [Internet]. 2018;(35). Available from: https://www. lls.org/sites/default/files/National/USA/Pdf/Publications/FS35_MRD_Final_2019.pdf
Terwilliger T, Abdul-Hay M. Acute lymphoblastic leukemia:a comprehensive review and 2017 update. Blood Cancer J [Internet]. 2017;7(6):e577. Available from: https://www.nature.com/articles/bcj201753
Tan SH, Bertulfo FC, Sanda T. Leukemia-initiating cellsin T-cell acute lymphoblastic leukemia. Front Oncol [Internet]. 2017;7(SEP). Available from: https://www.frontiersin.org/articles/10.3389/fonc.2017.00218/full
Fattizzo B, Rosa J, Giannotta JA, Baldini L, Fracchiolla NS. The Physiopathology of T- Cell Acute Lymphoblastic Leukemia: Focus on Molecular Aspects. Front Oncol [Internet]. 2020;10(February):1–11. Available from: https://www.frontiersin.org/articles/10.3389/fonc.2020.00273/full
Genescà E, Morgades M, Montesinos P, Barba P, Gil C, Guàrdia R, et al. Unique clinico-biological, genetic and prognostic features of adult early T-cell precursor acute lymphoblastic leukemia. Haematologica [Internet]. 2020 Jun;105(6):e294–7. Available from: https://haematologica.org/article/view/9459
Heikamp EB, Pui C-H. Next-Generation Evaluation and Treatment of Pediatric Acute Lymphoblastic Leukemia. J Pediatr [Internet]. 2018 Dec;203:14-24.e2. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022347618309442 Sentís I, Gonzalez S, Genescà E, García-Hernández V, Muiños F, Gonzalez C, et al. The evolution of relapse of adult T cell acute lymphoblastic leukemia. Genome Biol [Internet]. 2020;21(1):1–24. Available from: https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02192-z
Iacobucci I, Mullighan CG. Genetic basis of acute lymphoblastic leukemia. J Clin Oncol [Internet]. 2017;35(9):975–83. Available from: https://ascopubs.org/doi/10.1200/JCO.2016.70.7836
Van Dongen JJM, Van Der Velden VHJ, Brüggemann M, Orfao A. Minimal residual disease diagnostics in acute lymphoblastic leukemia: Need for sensitive, fast, and standardized technologies. Blood [Internet]. 2015;125(26):3996–4009. Available from: https://ashpublications.org/blood/article/125/26/3996/34323/ Minimal-residual-disease-diagnostics-in-acute
Wu J, Jia S, Wang C, Zhang W, Liu S, Zeng X, et al. Minimal Residual Disease Detection and Evolved IGH Clones Analysis in Acute B Lymphoblastic Leukemia Using IGH Deep Sequencing. Front Immunol [Internet]. 2016 Oct 4;7(October):1–11. Available from: http://journal.frontiersin.org/article/10.3389/fimmu.2016.00403
Del Principe MI, De Bellis E, Gurnari C, Buzzati E, Savi A, Consalvo MAI, et al. Applications and efficiency of flow cytometry for leukemia diagnostics. Expert Rev Mol Diagn [Internet]. 2019;19(12):1089–97. Available from: https://doi.org/10.1080/14737159.2019.1691918
Azad A, Rajwa B, Pothen A. Immunophenotype discovery, hierarchical organization, and template-based classification of flow cytometry samples. Front Oncol [Internet]. 2016;6(AUG):1–20. Available from: https://www.frontiersin.org/articles/10.3389/fonc.2016.00188/full
Adan A, Alizada G, Kiraz Y, Baran Y, Nalbant A. Flow cytometry: basic principles and applications. Crit Rev Biotechnol [Internet]. 2017;37(2):163–76. Available from: https://www.tandfonline.com/doi/full/10.3109/07388551.2015.1128876
Tembhare P, Badrinath Y, Ghogale S, Patkar N, Dhole N,
Dalavi P, et al. A novel and easy FxCycleTM violet based
flow cytometric method for simultaneous assessment
of DNA ploidy and six-color immunophenotyping.
Cytom Part A [Internet]. 2016;89(3):281–91. Available
from: https://onlinelibrary.wiley.com/doi/full/10.1002/
cyto.a.22803
Kalina T, Lundsten K, Engel P. Relevance of Antibody
Validation for Flow Cytometry. Cytom Part A [Internet].
;97(2):126–36. Available from: https://onlinelibrary.
wiley.com/doi/full/10.1002/cyto.a.23895
Belver L, Ferrando A. The genetics and mechanisms of
T cell acute lymphoblastic leukaemia. Nat Rev Cancer
[Internet]. 2016;16(8):494–507. Available from: http://
dx.doi.org/10.1038/nrc.2016.63
DiGiuseppe JA, Wood BL. Applications of Flow Cytometric
Immunophenotyping in the Diagnosis and Posttreatment
Monitoring of B and T Lymphoblastic Leukemia/
Lymphoma. Cytom Part B - Clin Cytom [Internet].
;96(4):256–65. Available from: https://onlinelibrary.
wiley.com/doi/epdf/10.1002/cyto.b.21833
Dong M, Zhang X, Yang Z, Wu S, Ma M, Li Z, et
al. Patients over 40 years old with precursor T-cell
lymphoblastic lymphoma have different prognostic
factors comparing to the youngers. Sci Rep [Internet].
;8(1):1–7. Available from: https://www.nature.com/
articles/s41598-018-19565-x
Sun J, Wang L, Liu Q, Tárnok A, Su X. Deep learningbased
light scattering microfluidic cytometry for label-free
acute lymphocytic leukemia classification. Biomed Opt
Express [Internet]. 2020;11(11):6674. Available from:
https://www.osapublishing.org/boe/fulltext.cfm?uri=boe-
-11-6674&id=441886
Loghavi S, Kutok JL, Jorgensen JL. B-acute lymphoblastic
leukemia/lymphoblastic lymphoma. Am J Clin Pathol
[Internet]. 2015;144(3):393–410. Available from: https://
academic.oup.com/ajcp/article/144/3/393/1760791
Noronha EP, Codeço Marques LV, Andrade FG, Santos
Thuler LC, Terra-Granado E, Pombo-De-Oliveira MS. The
profile of immunophenotype and genotype aberrations in
subsets of pediatric T-cell acute lymphoblastic leukemia.
Front Oncol [Internet]. 2019;9(APR):1–10. Available
from: https://www.frontiersin.org/articles/10.3389/
fonc.2019.00316/full
Rocha JMC, Xavier SG, Souza ME de L, Murao M, de
Oliveira BM. Comparison between flow cytometry and
standard PCR in the evaluation of MRD in children with
acute lymphoblastic leukemia treated with the GBTLI
LLA–2009 protocol. Pediatr Hematol Oncol [Internet].
;36(5):287–301. Available from: https://doi.org/10.10
/08880018.2019.1636168
Rytting ME, Jabbour EJ, O’Brien SM, Kantarjian HM.
Acute lymphoblastic leukemia in adolescents and young
adults. Cancer [Internet]. 2017;123(13):2398–403.
Available from: https://acsjournals.onlinelibrary.wiley.com/
doi/full/10.1002/cncr.30624
Ministerio de salud y Protección Social. Guía de práctica
clínica para la detección, tratamiento y seguimiento de
leucemias linfoblásticas y mieliode en población mayor
de 18 años [Internet]. Vol. 126, Circulation. 2017. 37
p. Available from: http://gpc.minsalud.gov.co/gpc_sites/
Repositorio/Conv_563/GPC_Leucemia_Mayores_18años/
LEUCEMIAS - profesionalesDIC29_WEB.pdf
Keegan A, Charest K, Schmidt R, Briggs D, Deangelo
DJ, Li B, et al. Flow cytometric minimal residual disease
assessment of peripheral blood in acute lymphoblastic
leukaemia patients has potential for early detection of
relapsed extramedullary disease. J Clin Pathol [Internet].
;1–6. Available from: https://jcp.bmj.com/
content/71/7/653
Fossat C, Roussel M, Arnoux I, Asnafi V, Brouzes C,
Garnache-Ottou F, et al. Methodological aspects of minimal
residual disease assessment by flow cytometry in acute
lymphoblastic leukemia: A french multicenter study. Cytom
Part B - Clin Cytom [Internet]. 2015;88(1):21–9. Available
from: https://onlinelibrary.wiley.com/doi/epdf/10.1002/
cyto.b.21195
Thulasi Raman R, Anurekha M, Lakshman
V, Balasubramaniam R, Ramya U, Revathi R.
Immunophenotypic modulation in pediatric B
lymphoblastic leukemia and its implications in MRD
detection. Leuk Lymphoma [Internet]. 2020;61(8):1974–
Available from: https://doi.org/10.1080/10428194.202
1742902
Ravandi F, Jorgensen JL, O’Brien SM, Jabbour E, Thomas
DA, Borthakur G, et al. Minimal residual disease assessed
by multi-parameter flow cytometry is highly prognostic
in adult patients with acute lymphoblastic leukaemia. Br
J Haematol [Internet]. 2016;172(3):392–400. Available
from: https://onlinelibrary.wiley.com/doi/full/10.1111/
bjh.13834
Li HF, Meng WT, Jia YQ, Jiang NG, Zeng TT, Jin YM, et
al. Development-Associated immunophenotypes reveal the
heterogeneous and individualized early responses of adult
B-Acute lymphoblastic leukemia. Med (United States)
[Internet]. 2016;95(34). Available from: https://journals.
lww.com/md-journal/Fulltext/2016/08230/Development_
associated_immunophenotypes_reveal_the.18.aspx
Li SQ, Fan QZ, Xu LP, Wang Y, Zhang XH, Chen H, et al.
Different Effects of Pre-transplantation Measurable Residual
Disease on Outcomes According to Transplant Modality
in Patients With Philadelphia Chromosome Positive ALL.
Front Oncol [Internet]. 2020;10(March):1–13. Available
from: https://www.frontiersin.org/articles/10.3389/
fonc.2020.00320/full
Keeney M, Hedley BD, Chin-Yee IH. Flow cytometry—
Recognizing unusual populations in leukemia and
lymphoma diagnosis. Int J Lab Hematol [Internet].
;39(January):86–92. Available from: https://
onlinelibrary.wiley.com/doi/full/10.1111/ijlh.12666
Marsán Suárez V, del Valle Pérez LO, Díaz Domínguez
G, Macías Abraham C. Metodología y aplicaciones de
la citometría de flujo para el inmunofenotipaje de las
leucemias agudas Methodology and applications of flow
cytometry for immunophenotyping of acute leukemias.
Rev Cuba Hematol, Inmunol y Hemoter [Internet].
;31(3):242–53. Available from: http://scielo.sld.cu
Wood BL. Principles of minimal residual disease detection
for hematopoietic neoplasms by flow cytometry. Cytom Part
B - Clin Cytom [Internet]. 2016;90(1):47–53. Available
from: https://onlinelibrary.wiley.com/doi/epdf/10.1002/
cyto.b.21239
Theunissen P, Mejstrikova E, Sedek L, Van Der Sluijs-
Gelling AJ, Gaipa G, Bartels M, et al. Standardized flow
cytometry for highly sensitive MRD measurements in
B-cell acute lymphoblastic leukemia. Blood [Internet].
;129(3):347–57. Available from: https://
ashpublications.org/blood/article/129/3/347/36021/
Standardized-flow-cytometry-for-highly-sensitive
Arriaga-Pizano L, Ramírez-Ramírez D, Prieto-Chávez
J, Pelayo R, Ruiz-Argüelles A. Report of the First
National Consensus Meeting for Acute Leukemias
Immunophenotyping. Gac México [Internet].
;155(1):4–10. Available from: https://www.
gacetamedicademexico.com/frame_esp.php?id=245
Consorcio EuroFlow. Standardized EuroFlow Protocols.
EuroFlow [Internet]. 2018;1. Available from: https://
euroflow.org/protocols/
Cytognos SL. BulklysisTM Para uso diagnóstico in vitro.
Cytognos [Internet]. 2022;1. Available from: https://www.
cytognos.com/products/cyt-bl/
Kalina T, Velden VHJ Van Der, Bo S. EuroFlow
standardization of flow cytometer instrument
settings and immunophenotyping protocols.
;(January):1986–2010. Available from: https://www.
nature.com/articles/leu2012122
Chatterjee T, Mallhi RS, Venkatesan S. Minimal residual
disease detection using flow cytometry: Applications in
acute Leukemia. Med J Armed Forces India [Internet].
;72(2):152–6. Available from: http://dx.doi.
org/10.1016/j.mjafi.2016.02.002
Chen X, Wood BL. Monitoring minimal residual disease
in acute leukemia: Technical challenges and interpretive
complexities. Blood Rev [Internet]. 2017;31(2):63–
Available from: http://dx.doi.org/10.1016/j.
blre.2016.09.006
Wenzinger C, Williams E, Gru AA. Updates in the
Pathology of Precursor Lymphoid Neoplasms in the Revised
Fourth Edition of the WHO Classification of Tumors of
Hematopoietic and Lymphoid Tissues. Curr Hematol Malig
Rep [Internet]. 2018;13(4):275–88. Available from: https://
link.springer.com/article/10.1007/s11899-018-0456-8
Xia M, Zhang H, Lu Z, Gao Y, Liao X, Li H. Key
markers of minimal residual disease in childhood acute
lymphoblastic leukemia. J Pediatr Hematol Oncol
[Internet]. 2016;38(6):418–22. Available from: https://
journals.lww.com/jpho-online/Abstract/2016/08000/Key_
Markers_of_Minimal_Residual_Disease_in.2.aspx
Popov A, Henze G, Verzhbitskaya T, Roumiantseva J,
Lagoyko S, Khlebnikova O, et al. Absolute count of
leukemic blasts in cerebrospinal fluid as detected by flow
cytometry is a relevant prognostic factor in children with
acute lymphoblastic leukemia. J Cancer Res Clin Oncol
[Internet]. 2019;145(5):1331–9. Available from: http://
dx.doi.org/10.1007/s00432-019-02886-3
McShane LM, Smith MA. Prospects for Minimal Residual
Disease as a Surrogate Endpoint in Pediatric Acute
Lymphoblastic Leukemia Clinical Trials. JNCI Cancer
Spectr [Internet]. 2018;2(4):5–6. Available from: https://
academic.oup.com/jncics/article/2/4/pky070/5253647
Karawajew L, Dworzak M, Ratei R, Rhein P, Gaipa G,
Buldini B, et al. Minimal residual disease analysis by
eight-color flow cytometry in relapsed childhood acute
lymphoblastic leukemia. Haematologica [Internet].
;100(7):935–44. Available from: https://
haematologica.org/article/view/7439
Bruggemann M, Kotrova M. Minimal residual disease
in adult ALL: Technical aspects and implications for
correct clinical interpretation. Blood Adv [Internet].
;1(25):2456–66. Available from: https://
ashpublications.org/hematology/article/2017/1/13/21072/
Minimal-residual-disease-in-adult-ALL-technical
Walter RB, Gooley TA, Wood BL, Milano F, Fang M,
Sorror ML, et al. Impact of pretransplantation minimal
residual disease, as detected by multiparametric flow
cytometry, on outcome of myeloablative hematopoietic cell
transplantation for acute myeloid leukemia. J Clin Oncol
[Internet]. 2011;29(9):1190–7. Available from: https://
www.hindawi.com/journals/lrt/2014/421723/
Gökbuget N. How should we treat a patient with
relapsed Ph-negative B-ALL and what novel approaches
are being investigated? Best Pract Res Clin Haematol
[Internet]. 2017;30(3):261–74. Available from:
https://www.sciencedirect.com/science/article/abs/pii/
S1521692617300270?via%3Dihub
Tembhare PR, Narula G, Khanka T, Ghogale S, Chatterjee
G, Patkar N V., et al. Post-induction Measurable Residual
Disease Using Multicolor Flow Cytometry Is Strongly
Predictive of Inferior Clinical Outcome in the Real-Life
Management of Childhood T-Cell Acute Lymphoblastic
Leukemia: A Study of 256 Patients. Front Oncol [Internet].
;10(April):1–13. Available from: https://www.
frontiersin.org/articles/10.3389/fonc.2020.00577/full
Schrappe M. Detection and management of minimal
residual disease in acute lymphoblastic leukemia.
Hematol (United States) [Internet]. 2014;2014(1):244–9.
Available from: https://ashpublications.org/hematology/
article/2014/1/244/20518/Detection-and-management-ofminimal-
residual
Kruse A, Abdel-Azim N, Kim HN, Ruan Y, Phan V,
Ogana H, et al. Minimal residual disease detection in
acute lymphoblastic leukemia. Int J Mol Sci [Internet].
;21(3). Available from: https://www.mdpi.com/1422-
/21/3/1054/htm
Abou Dalle I, Jabbour E, Short NJ. Evaluation and
management of measurable residual disease in acute
lymphoblastic leukemia. Ther Adv Hematol [Internet].
;11:204062072091002. Available from: https://
journals.sagepub.com/doi/10.1177/2040620720910023
Hoelzer D, Bassan R, Dombret H, Fielding A, Ribera
JM, Buske C, et al. Acute lymphoblastic leukaemia in
adult patients: ESMO clinical practice guidelines for
diagnosis, treatment and follow-up. Ann Oncol [Internet].
;27(February):v69–82. Available from: http://dx.doi.
org/10.1093/annonc/mdw025
Pui CH, Pei D, Raimondi SC, Coustan-Smith E, Jeha S,
Cheng C, et al. Clinical impact of minimal residual disease
in children with different subtypes of acute lymphoblastic
leukemia treated with Response-Adapted therapy. Leukemia
[Internet]. 2017;31(2):333–9. Available from: http://dx.doi.
org/10.1038/leu.2016.234
Campana D, Pui C. Evidence-Based Focused Review
Minimal residual disease – guided therapy in childhood
acute lymphoblastic leukemia Case presentations. Blood
[Internet]. 2017;129(14):1913–9. Available from: https://
ashpublications.org/blood/article/129/14/1913/35887/
Minimal-residual-disease-guided-therapy-in
Jabbour E, O’Brien S, Konopleva M, Kantarjian H.
New insights into the pathophysiology and therapy of
adult acute lymphoblastic leukemia. Cancer [Internet].
;121(15):2517–28. Available from: https://acsjournals.
onlinelibrary.wiley.com/doi/full/10.1002/cncr.29383
Raetz EA, Teachey DT. T-cell acute lymphoblastic leukemia.
Hematology [Internet]. 2016 Dec 2;2016(1):580–8.
Available from: https://ashpublications.org/hematology/
article/2016/1/580/21136/T-cell-acute-lymphoblasticleukemia
Nováková M, Glier H, Brdičková N, Vlková M, Helena
A, Lima M, et al. How to make usage of the standardized
EuroFlow 8-color protocols possible for instruments of
different manufacturers. J Immunol Methods [Internet].
;475. Available from: https://ezproxy.unicolmayor.edu.
co:2163/science/article/pii/S0022175917301394
PETHEMA. Protocolo para el tratamiento de la leucemia
aguda linfoblastica de alto riesgo bcr/abl negativa en
adultos. Soc ESPAÑOLA Hematol Y Hemoter. 2013;1–46.
Euroflow and Cytognos. CYT-BCP-ALL-MRD, B-Cell
Precursor Acute Lymphoblastic Leukemia Minimal Residual
Disease. 2022;3:1–7. Available from: https://www.cytognos.
com/products/cyt-bcp-all-mrd/
Euroflow and Cytognos. CYT-ALOT Acute Leukemia
Orientation Tube. Cytognos [Internet]. 2022;3:1–9.
Available from: https://www.cytognos.com/products/cytalot/
Theunissen PMJ, Sedek L, Haas V De, Szczepanski T, Der
A Van, Mejstrikova E, et al. Detailed immunophenotyping
of B-cell precursors in regenerating bone marrow of acute
lymphoblastic leukaemia patients : implications for minimal
residual disease detection. Br J Haematol [Internet].
;178(2):257–66. Available from: https://onlinelibrary.
wiley.com/doi/10.1111/bjh.14682
Cytognos SL. Cytognos Products. Cytognos. Cytognos.
;(3):1–4.
Derechos de autor 2022 Nova

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
NOVA por http://www.unicolmayor.edu.co/publicaciones/index.php/nova se distribuye bajo una licencia Reconocimiento No Comercial- Compartir igual
Así mismo, los autores mantienen sus derechos de propiedad intelectual sobre los artículos,
Declaración de privacidad.
Los nombres y las direcciones de correo electrónico introducidos en esta revista se usarán exclusivamente para los fines establecidos en ella y no se proporcionarán a terceros o para su uso con otros fines.