Valor pronóstico de los marcadores bioquímicos en pacientes con COVID-19
Numero especial
PDF

Palabras clave

diagnóstico
COVID-19
biomarcadores
rastreo
biotransformación
metabolismo

Cómo citar

Gutiérrez Suárez, J. C., Almonacid Urrego, C. C., Hernández Rojas , E. del C., & Mendieta Zerón, H. (2020). Valor pronóstico de los marcadores bioquímicos en pacientes con COVID-19. Nova, 18(35), 53 - 60. https://doi.org/10.22490/24629448.4186

Resumen

El SARS-CoV-2 es un virus de la familia Coronaviridae, subfamilia coronavirus (CoV) y género β. Este se ha convertido en una amenaza inminente para toda la humanidad por ser el agente causal de la pandemia COVID-19, la cual llevó, por un lado, a la declaratoria de emergencia sanitaria a nivel mundial por parte de la Organización Mundial de la Salud (OMS) y, por otro, a instituir estrictas medidas de control para prevenir su contagio por parte de muchos gobiernos. En cuanto a la fisiopatología presentada en esta entidad, aunque las lesiones pulmonares han sido consideradas como las principales consecuencias de esta infección, a medida que avanza el conocimiento sobre el virus se han identificado también lesiones a nivel cardiaco, hepático y renal, que potencian la severidad de la infección y generan un mayor deterioro de los pacientes, su ingreso a las Unidades de Cuidados Intensivos y un mayor riesgo de mortalidad. Con base en esto, diversas investigaciones se han encaminado a determinar aquellos hallazgos clínicos y paraclínicos que puedan ser relevantes frente al pronóstico de los pacientes. Por lo anterior, la presente revisión aborda literatura disponible sobre los principales biomarcadores bioquímicos reportados por su asociación a daños cardiaco, hepático y renal, los cuales presentan mayor significancia para evaluar el curso, severidad, manejo y pronóstico de la infección, y cuya alteración conlleva finalmente a un mayor riesgo de mortalidad en pacientes hospitalizados que presentan COVID-19.

https://doi.org/10.22490/24629448.4186
PDF

Citas

Clerkin K, Fried J, Raikhelkar J, Sayer G, Griffin J, Masoumi A, et al. COVID-19 and Cardiovascular Disease. Circulation. 2020 [citado 17 de junio de 2020]; 141:1648–1655 DOI: 10.1161/CIRCULATIONAHA.120.046941

Chen C, Zhou Y, Wang DW. SARS-CoV-2: a potential novel etiology of fulminant myocarditis. Herz. 2020;45: 230–232. DOI: 10.1007/s00059-020-04909

Huang Ch, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet. 2020;395:497-506. DOI: 10.1016/S0140-6736(20)30183-5

Lippi G, Lavie CJ, Sanchis-Gomar F. Cardiac troponin I in patients with coronavirus disease 2019 (COVID-19): Evidence from a meta-analysis. Prog Cardiovasc Dis. 2020 May-Jun;63(3):390-391. DOI: 10.1016/j.pcad.2020.03.001. Vestjens SMT, Spoorenberg SMC, Rijkers GT, et al. High-sensitivity cardiac troponin T predicts mortality after hospitalization for community-acquired pneumonia. Respirology. 2017;22(5):1000-1006. DOI:10.1111/resp.12996

Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F, Gong W, Liu X, Liang J, Zhao Q, Huang H, Yang B, Huang C. Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China. JAMA Cardiol. 2020;5(7):802-10. DOI: 10.1001/jamacardio.2020.0950. G Guo T, Fan Y, Chen M, Wu X, Zhang L, He T, Wang H, Wan J, Wang X, Lu Z. Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020 Mar 27;5(7):1–8. doi: 10.1001/jamacardio.2020.1017. Epub ahead of print. PMID: 32219356; PMCID: PMC7101506.Bai T, Tu S, Wei Y, Xiao L, Jin Y, Zhang L, et al. Clinical and Laboratory Factors Predicting the Prognosis of Patients with COVID-19: An Analysis of 127 Patients in Wuhan, SSRN, 2020 DOI: 10.2139/ssrn.3546118.

Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46(5):846-848. DOI: 10.1007/s00134-020-05991-x. Erratum in: Intensive Care Med. 2020 ABr 6.

Cheng Y, Luo R, Wang K, Zhang M, Wang Z, Dong L, Li J, Yao Y, Ge S, Xu G. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 2020;97(5):829-838. DOI: 10.1016/j.kint.2020.03.005.

Ammirati E, Wang DW. SARS-CoV-2 inflames the heart. The importance of awareness of myocardial injury in COVID-19 patients. Int J Cardiol. 2020;311:122-123. DOI: 10.1016/j.ijcard.2020.03.086.

Zhou F, F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-1062. DOI: 10.1016/S0140-6736(20)30566-3. Erratum in: Lancet. 2020 Mar 28;395(10229):1038. Erratum in: Lancet. 2020 Mar 28;395(10229):1038.

Zhang G, Zhang J, Wang B, Zhu X, Wang Q, Qiu S, et al. Analysis of clinical characteristics and laboratory findings of 95 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a retrospective analysis. Respir Res. 2020; 21(74). https://doi.org/10.1186/s12931-020-01338-8

Wang F, Hou H, Luo Y, Tang G, Wu S, Huang M, et al. The laboratory tests and host immunity of COVID-19 patients with different severity of illness. JCI Insight. 2020;5(10):e137799. doi: 10.1172/jci.insight.137799.

Liu K, Fang YY, Deng Y, Liu W, Wang MF, Ma JP, et al. Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province. Chin Med J (Engl). 2020;133(9):1025-1031. DOI: 10.1097/CM9.0000000000000744.

Mardani R, Vasmehjani A, Zali F, Gholami A, Nasab S, Kaghazian H, et al. Laboratory Parameters in Detection of COVID-19 Patients with Positive RT-PCR; a Diagnostic Accuracy Study. Mardani R, Ahmadi Vasmehjani A, Zali F, et al. Laboratory Parameters in Detection of COVID-19 Patients with Positive RT-PCR; a Diagnostic Accuracy Study. Arch Acad Emerg Med. 2020;8(1): e43

Herold T, Jurinovic V, Arnreich C, Lipworth B, Hellmuth J, Bergwelt-Baildon M, et al. Elevated levels of IL-6 and CRP predict the need for mechanical ventilation in COVID-19. J Allergy Clin Immunol. 2020;146(1):128-136.e4. DOI: 10.1016/j.jaci.2020.05.008.

Wei YY, Wang RR, Zhang DW, et al. Risk factors for severe COVID-19: Evidence from 167 hospitalized patients in Anhui, China. J Infect. 2020;81(1):e89-e92. DOI:10.1016/j.jinf.2020.04.010

Xu, Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020;8(4):420-422. DOI: 10.1016/S2213-2600(20)30076-X.

Siordia JA Jr. Epidemiology and clinical features of COVID-19: A review of current literature. J Clin Virol. 2020;127:104357. DOI:10.1016/j.jcv.2020.104357

W.J. Guan, Z.Y. Ni, Y. Hu, et al., Clinical characteristics of 2019 novel coronavirus infection in China, N Engl J Med 2020;382:1708-1720. DOI: 10.1056/NEJMoa2002032

Li Q, Ding X, Xia G, Geng Z, ChenF, Wang L, Wang Z. A simple laboratory parameter facilitates early identification of COVID-19 patients. Medxiv.2020. Disponible en: https://www.medrxiv.org/content/10.1101/2020.03.17.20037572v1

Liu Y, Yang Y, Zhang C, Huang F, Wang F, Yuan J, et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci. China Life Sci. 2020; 63: 364–374. DOI:10.1007/s11427-020-1643-8

Aboughdir M, Kirwin T, Abdul Khader A, Wang B. Prognostic Value of Cardiovascular Biomarkers in COVID-19: A Review. Viruses. 2020;12(5):527. DOI:10.3390/v12050527

Vetter P, Vu DL, L’Huillier A, Schibler M, Kaiser L, Jacquerioz F. Clinical features of covid-19 The wide array of symptoms has implications for the testing strategy. BMJ. 2020; 369:m1470. DOI: 10.1136/bmj.m1470

Chan F, Yuan S, Kok K, To K, Chu H, Xing J, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: study of a family cluster. Lancet 2020; 395: 514–23. DOI:10.1016/S0140-6736(20)30154-9

Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020; 395: 507–13. DOI:10.1016/S0140-6736(20)30211-7

Inciardi R, Lupi L, Zaccone G, Italia L, Raffo M, Tomasoni D, et al. Cardiac Involvement in a Patient with Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020. DOI:10.1001/jamacardio.2020.1096

Wang D, Hu B, HuC, Zhu F,Liu X, Zhang J, et al. Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-1069. DOI:10.1001/jama.2020.1585

Wan, S.; Xiang, Y.; Fang,W.; Zheng, Y.; Li, B.; Hu, Y.; Lang, C.; Huang, D.; Sun, Q.; Xiong, Y.; et al. Clinical Features and Treatment of COVID-19 Patients in Northeast Chongqing. J. Med. Virol. 2020;92(7):797-806. DOI:10.1002/jmv.25783.

Jin YH, Cai L, Cheng ZS, Cheng H, Deng T, Fan YP, et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Mil Med Res. 2020;7(1):4. DOI:10.1186/s40779-020-0233-6

McRae M, Simmons G, Christodoulides N, Lu Z, Kang S, Fenyo D, et al. Clinical decision support tool and rapid point-ofcare platform for determining disease severity in patients with COVID-19. Lab Chip. 2020; 20:2075-85. DOI:10.1039/d0lc00373e.

Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 2020; 18: 844–847. DOI:10.1111/jth.14768

Lippi G, Favaloro EJ. D-dimer is Associated with Severity of Coronavirus Disease 2019: A Pooled Analysis. Thromb Haemost. 2020;120(5):876-878. doi:10.1055/s-0040-1709650

Zhang L, Yan X, Fan Q, Lui H, Liu X, Liu Z, et al. D-dimer levels on admission to predict in-hospital mortality in patients with Covid-19. J Thromb Haemost. 2020;18(6):1324-1329. DOI:10.1111/jth.14859

Bavishi C, Maddox TM, Messerli FH. Coronavirus Disease 2019 (COVID-19) Infection and Renin Angiotensin System Blockers. JAMA Cardiol. 2020. DOI:10.1001/jamacardio.2020.1282

Petrilli CM, Jones SA, Yang J, Rajagopalan H, O'Donnell L, Chernyak Y, et al. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study. BMJ. 2020;369:m1966. DOI:10.1136/bmj.m1966

Holshue M, DeBolt C, Lindquist S, Lofy K, Wiesman J. Bruce H, et al. First Case of 2019 Novel Coronavirus in the United States. N Engl J Med. 2020; N Engl J Med 2020; 382:929-936. DOI: 10.1056/NEJMoa2001191

Xu L, Liu J, Lu M, Yang D, Zheng X. Liver injury during highly pathogenic human coronavirus infections. Liver Int. 2020;40(5):998-1004. DOI:10.1111/liv.14435

Arentz M, Yim E, Klaff L, Lokhandwala S, Riedo F, Chong F, et al. Characteristics and Outcomes of 21 Critically Ill Patients With COVID-19 in Washington State JAMA. 2020;; 323(16):1612-1614. DOI:10.1001/jama.2020.4326

Wu J, Song S, Cao HC, Li LJ. Liver diseases in COVID-19: Etiology, treatment and prognosis. World J Gastroenterol. 2020;26(19):2286-2293. DOI:10.3748/wjg.v26.i19.2286

Hui DSC, Zumla A. Severe Acute Respiratory Syndrome: Historical, Epidemiologic, and Clinical Features. Infect Dis Clin North Am. 2019;33(4):869-889. DOI: 10.1016/j.idc.2019.07.001

Lippi G, Plebani M. Laboratory abnormalities in patients with COVID-2019 infection. Clin Chem Lab Med. 2020;58(7):1131-1134. DOI: 10.1515/cclm-2020-0198

Xu XW, Wu XX, Jian XG, Xu KJ, Ying LJ, Ma CL, Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: retrospective case series. BMJ 2020.; 368 DOI: https://doi.org/10.1136/bmj.m606

Lippi G, Plebani M. Procalcitonin in patients with severe coronavirus disease 2019 (COVID-19): A meta-analysis. Clin Chim Acta. 2020;505:190-191. DOI:10.1016/j.cca.2020.03.004

Fu, L., Wang, B., Yuan, T., Chen, X., Ao, Y., Fitzpatrick, T., et al. Clinical characteristics of coronavirus disease 2019 (COVID-19) in China: A systematic review and meta-analysis. The Journal of infection. 2020;80(6):656–665. DOI: 10.1016/j.jinf.2020.03.041

Harapan H, ItohN, Yufika A, Winardi W, Keam S, Te H. Coronavirus disease 2019 (COVID-19): A literature review. J Infect Public Health. 2020;13(5):667-673. DOI: 10.1016/j.jiph.2020.03.019.

L. Yan, H.T. Zhang, J. Goncalves, et al. A machine learning-based model for survival prediction in patients with severe COVID-19 infection, MedRxiv. 2020. DOI: 10.1101/2020.02.27.20028027.
Creative Commons License
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-SinObrasDerivadas 4.0.

Derechos de autor 2020 Nova

Detalle de visitas

PDF: 674
Resumen: 1072