Pseudomonas oryzihabitans: un microorganismo de creciente interés científico

Autores/as

  • Diana Carolina Gutiérrez Bustos Bacteriólogas y Laboratoristas Clínicas de la Universidad Colegio Mayor de Cundinamarca.
  • Ana María Hernández Marín Bacteriólogas y Laboratoristas Clínicas de la Universidad Colegio Mayor de Cundinamarca.
  • Lucía Constanza Corrales Ramírez MSc. Docente Investigador Universidad Colegio Mayor de Cundinamarca.

DOI:

https://doi.org/10.22490/24629448.1833

Palabras clave:

biocontrolador, microorganismo, Pseudomonas oryzihabitans, rizosfera, simbiosis.

Resumen

Este artículo tiene por objetivo determinar las características microbiológicas, bioquímicas y moleculares de la bacteria Pseudomonas oryzihabitans, la importancia que tiene en la salud pública y su competencia como agente
nosocomial. Se establecen las condiciones de sostenibilidad in vitro para proyectar su uso en diferentes áreas biotecnológicas como: agroambiental, particularmente como biocontrolador de larvas y promotor de crecimiento
de plantas, y en la industrial, como alternativa en la producción de vitamina C.
La identificación de esta especie de Pseudomonas por técnicas de biología molecular resulta más complicado que para otras, ya que de esta se encuentran reportados muy pocos genes en la base de datos del Centro Nacional para la Información Biotecnológica NCBI. La secuencia que se ha utilizado con mayor frecuencia para identificar esta bacteria en sus diferentes habitats es la de la subunidad ADNr 16S, codificada por el gen rrs o 16S ADNr, considerado un buen marcador molecular; debido a que su estructura y función han permanecido constantes durante un tiempo muy prolongado. La técnica de la PCR, resulta ser adecuada para confirmar la identificación de esta cepa dada su especificidad, precisión y bajo costo.

Citas

Bendig JW, Mayes PJ, Eyers DE, Holmes B, Chin TT. Flavimonas oryzihabitans (Pseudomonas oryzihabitans; CDC Group Ve-2): an emerging pathogen in peritonitis related to continuous ambulatory peritoneal dialysis?. J Clin Microbiol. 1989;27:217-218.

Martín A. Introducción a la microbiología del suelo: México D.F: AGT; 1980.

Widmer F, Seidler R, Gillevet PM, Watrud L, Di Giovanni GD. A Highly selective PCR protocol for detecting 16S rRNA genes of the genus Pseudomonas (sensu stricto) in environmental samples. Appl Environ Microbiol. 1998;64:2545–2553.

Ping W, Xiuting L, Musfei X, Qian Z. Characterization of efficient aerobic denitrifiers isolated from two different sequencing bactch reactors by 16S- RNAr analysis. J Biosci Bioeng. 2007;103:563-567.

Jeffrey E. Rapid molecular diagnosis of Lactobacillus bacteremia by terminal restriction fragment length polymorphism analysis of the 16S rRNA gene. Clin Med Res. 2004;2:37-45.

Laguerre G, Rigottier G, Lemanceau P. Fluorescent Pseudomonas species categorized by using polymerase chain reaction (PCR)/ restriction fragment analysis of 16S rDNA. Mol Ecol. 1994;3:479–487.

Kersters K, Ludwig W, Vancanneyt M, DE Vos P, Gillis M, Schleifer KH. Recent changes in classification of Pseudomonads: an overview. Syst Appl Microbiol. 1996;19:465–477.

Cladera AM, Bennasar A, Barceló M, Lalucat J, García E. Comparative genetic diversity of Pseudomonas stutzeri genomovars, clonal structure, and phylogeny of the species. J Bacteriol. 2004;186:5239–5248.

Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H, Hashimoto Y, et al. Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov.

Microbiol. Immunol. 1993;36:1251–1275.

Kodama K, Kimura N, Komagata K. Two new species of Pseudomonas: P. oryzihabitans isolated from rice paddy and clinical specimens and P. luteola isolated from clinical specimens. Int. J Syst Bacteriol. 1985;35:467–474.

Behrendt U, Ulrich A, Schumann P, Erler W, Burghardt J, Seyfarth W. A taxonomic study of bacteria isolated from grasses: a proposed new species Pseudomonas graminis sp. Int J Syst Bacteriol. 1999;49:297– 308.

Bombicino K, Almuzara MN, Famiglietti AM, Vay C. Evaluation of pyrrolidonyl arylamidase for the identification of nonfermenting Gram-negative rods. Diagn Microbiol Infect Dis. 2007;57:101-103.

Pien FD. Group Ve-2 (Chromobacterium typhiflavum) bacteremia. J Clin Microbiol. 1977;6:435-436.

Tayeb L, Ageron E, Grimont F, Grimont PA. Molecular phylogeny of the genus Pseudomonas based on rpoB sequences and application for the identification of isolates. Res Microbiol. 2005;156:763–773.

Holmes B, Steigerwalt AG, Weaver RE, Brenner DJ. Chryseomonas luteola comb. nov. and Flavimonas oryzihabitans gen. nov., comb. nov., Pseudomonas like species from human clinical specimens and formerly known, respectively, as groups Ve-1 and Ve-2. Int. J Syst Bacteriol.

;37:245–250.

Anzai Y, Kudo Y, Oyaizu H.The Phylogeny of the Genera Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of these three genera. Int J Syst Bacteriol. 1997;47:249–251.

Willems A, Busse JM, Goor B, Pot E, Falsen E, Jantzen B, et al. Hydrogenophaga, a new genus of hydrogen-oxidizing bacteria that includes Hydrogenophaga flava comb. nov. (formerly Pseudomonas flava). Int. J Syst Bacteriol. 1989;39:319–333.

Krieg N.R, Holt J.G. Bergey´s Manual of Sistematic Bacteriology. Ed. Williams y Wilkings. Baltimor, U.S.A. 1984;1:141–199.

Dussart L, Dupont JP, Zimmerlin I, Lacroix M, Saiter JM, Junter GA, et al. Occurrence of sessile Pseudomonas oryzihabitans from a karstified chalk aquifer. Water Res. 2003;37:1593–1600.

Jussila MM, Ji Z, Suominen L, Lindström K. TOL plasmid transfer during bacterial conjugation in vitro and rhizoremediation of oil compounds in vivo. Environ Pollut. 2005;146:510-524.

Marin M, Viedma D, Martin Rabadan P, Rodriguez Creixems M, Bouza E. Infection of hickman catheter by Pseudomonas (formerly Flavimonas) oryzihabitans traced to a synthetic bath sponge. J Clin Microbiol. 1997;38: 4577–4579.

Dussart J. Bodilis S, Barray N, Frebourg M, Fournier M, Duponta JP et al . Recurrent recovery of Pseudomonas oryzihabitans strains in a karstified chalk aquifer. Water Res. 2007;41:111–117.

Kuklinsky J, Araújo LJ, Mendes R, Kleiner AA, Azeved JL. Isolation and characterization of endophytic bacteria from soybean Glycine max grown in soil treated with glyphosate herbicide. Plant Soil. 2005;273:91–99.

Chaudhry HJ, Schoch PE and Cunha BA. Flavimonas oryzihabitans (CDC Group Ve-2). Infect Control Hosp Epidemiol. 1992;13:485–488.

Hall JA, Peirson D, Ghosh S, and Glick BR. Root elongation in various agronomic crops by the plant growth promoting rhizobacterium Pseudomonas putida GR12–2. Israel J Plant Sci. 1996;44:37–42.

Gilardi G, Hirschl S, Mandel M. Characteristics of yellow-pigmented nonfermentative bacilli (groups Ve-1 and Ve-2) encountered in clinical bacteriology. J Clin Microbiol. 1975;1:384-389.

Freney, J, Hansen W, Etienne J, Vandenesch F, Fleurette J Postoperative infant septicemia caused by Pseudomonas luteola (CDC group Ve-1) and Pseudomonas oryzihabitans (CDC Group Ve-2). J Clin Microbiol. 1988;26: 1241-1243.

Reina J, Odgardd J, Llompart I, Alomar P. Flavimonas oryzihabitans (formerly CDC group Ve-2) bacteremia in a pediatric patient on assisted ventilation. Eur J Clin Microbiol Infect Dis. 1990;9:786-788.

Castagnola E, Conte M, Venzano P, Garaventa A, Viscoli C, Barretta MA, et al. Broviac catheter-related bacteraemias due to unusual pathogens in children with cancer: case reports with literature review. J Infect. 1997;34:215-218.

Kansouzidou A, Charitidou C, Poubrou E, Daniilidis VD, Tsagaropoulou H. Haemorrhagic papular rash associated to Flavimonas oryzihabitans bacteraemia in a child. Eur J Epidemiol. 2000;16:277-279.

Decker CF, Simon GL and Keiser JF. Flavimonas oryzihabitans (Pseudomonas oryzihabitans; CDC group Ve-2) bacteremia in the immunocompromised host. Arch Intern Med.1991;151:603-604.

Mutters R, Koppler H, Krause T. Isolation of Flavimonas oryzihabitans (CDC group Ve-2) from catheter-induced bacteremia in an immunocompromised patient. Eur J Epidemiol. 1990;6:436-447.

Conlu A, Rothman J, Staszewski H, Schoch PE, Domenico P, Quadri SM, et al. Flavimonas oryzihabitans (CDC group Ve-2) bacteraemia associated with hickman catheters. J Hosp Infect. 1992;20:293-299.

Esteban J, Martin J, Ortiz A, Santos-O'Connor F, Cabria F, Reyero A. Pseudomonas oryzihabitans peritonitis in a patient on continuous ambulatory peritoneal dialysis. Clin Microbiol Infect. 2002;8:607-618. Papakonstantinou S, Dounousi E, Ioannou K, Tsouchnikas I, Kelesidis

A, Nikolaos Kotzadamis, et al. A rare cause of peritonitis caused by Flavimonas oryzihabitans in continuous ambulatory peritoneal dialysis (CAPD). Int Urol Nephrol. 2005;37:433–436.

Levitski T, Ulian M. Peritonitis with multiple rare environmental bacteria in a patient receiving long-term peritoneal dialysis. Am J Kidney Dis. 2005;46:119-124.

Lejbkowicz F, Belavsky L, Kudinsky R, Gery R. Bacteremia and Sinusitis due to Flavimonas oryzihabitans) Peritonitis with multiple rare environmental bacteria in a patient receiving long-term peritoneal dialysis: Infection. Scand J Infect Dis. 2003;35:415-420.

Jayasekara N, Heard GM, Cox JM, Fleet GH. Populations of pseudomonads and related bacteria associated with bottled non-carbonated mineral water. Food Microbiol. 1998;15:167–176.

Woese CR, Blanz P, Hahn CM. What isn’t a pseudomonad: the importance of nomenclature in bacterial classification. Syst Appl Microbiol. 1984;5:179–195.

Darrell P, Peacock P, Aaron D, Philip E, Ann E, Chernov R, et al. Suspension array analysis of 16S rRNA from Fe- and SO4 2-reducing bacteria in uranium contaminated sediments undergoing bioremediation. Applied Environ Microbiol. 2006;28:4672–4687.

Hawkins RE, Moriarty RA, Lewis DE, Oldfield EC. Serious infections involving the CDC group Ve bacteria Chryseomonas luteola and Flavimonas oryzihabitans. Rev Infect Dis. 1991;13:257-260.

Sulo P, Hudecova D, Properova A, Basnak I, Sedlacek I.2,5-Diketo-Dgluconate production by a mixed culture of two newly-isolated strains: Flavimonas oryzihabitans and Pseudomonas cepacia. Biotechnol Lett. 2001;23:693–696.

Ferris H. Globodera rostochiensis. [Sitio en internet].Disponible en: http://plpnemweb.ucdavis.edu/nemaplex/Taxadata/G053S2.HTM. Consultado: 12 de febrero de 2009.

Andreoglou FI, Vagelas IK, Wood M, Samaliev HY, Gowen SR. Influence of temperature on the motility of Pseudomonas oryzihabitans and control of Globodera rostochiensis. Soil Biol Biochem.2003;35:1095-1101.

Belimov AA, Safronova VI, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov VE, et al. Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1- aminocyclopropane- 1-carboxylate deaminase. Can J Microbiol. 2001;47:642–652.

Glick BR, Karaturovic DM, and Newell PC. A novel procedure for rapid isolation of plant growth promoting pseudomonads. Can J Microbiol. 1995;41: 533–536.

Sajjad MM, Samina M, Normand P, Prigent CC, Moënne L, Bally R, et al. Molecular characterization and PCR detection of a nitrogenfixing Pseudomonas strain promoting rice growth. Biol Fertil Soils.

;43:163–170.

Jussila MM, Jurgens G, Lindström K, Suominen L. Genetic diversity of culturable bacteria in oil-contaminated rhizosphere of Galega orientalis. Environ Pollut. 2005;139:244-257.

Barragán BE, Costa C, Peralta J, Barrera J, Esparza F, Rodriguez R. Biodegradation of organochlorine pesticides by bacteria grown in microniches of the porous structure of green bean coffee. Int Biodeterior Biodegradation. 2007; 59:239–244.

Sánchez L. Evaluación de la capacidad de cinco especies de bacterias halófilas para capturar sodio in vitro. Tesis de Maestría, Universidad Militar Nueva Granada. Bogotá, D.C; 2006.

Publicado

2009-06-15

Cómo citar

Gutiérrez Bustos, D. C., Hernández Marín, A. M., & Corrales Ramírez, L. C. (2009). Pseudomonas oryzihabitans: un microorganismo de creciente interés científico. Nova, 7(11), 103–112. https://doi.org/10.22490/24629448.1833

Número

Sección

Artículo de Revisión

Artículos más leídos del mismo autor/a