Copyright (c) 2025 Agricolae & Habitat

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Salinity, nitrogen imbalance, manganese. Auxin function, photosynthesis in oil palm (Elaeis Guineensis Jacq)
Contextualization: The study focuses on the physiology and agronomic management of the oil palm (Elaeis guineensis Jacq). Understanding the factors that affect its growth and productivity is essential to ensure the sustainability and profitability of this crop in response to stress.
Knowledge gap: There are knowledge gaps on how different abiotic factors, such as salinity, nitrogen, manganese and auxin, affect their growth and development. Furthermore, the photosynthetic efficiency of oil palm under stress conditions and its optimal agronomic management raise questions about some limitations that this study seeks to address.
Purpose: The main objective of the study is to investigate the effects of key abiotic factors on oil palm, such as salt stress, nitrogen balance, manganese deficiency and the role of auxin. In addition, the aim is to analyze the photosynthetic efficiency of the plant and propose management strategies to improve its productivity and sustainability.
Methodology: The bibliographic information review methodology includes searching academic databases, selecting relevant articles using specific criteria, critical analysis of the selected texts, and synthesis of the information to identify trends, gaps, and key findings in the literature.
Results and conclusions: The study revealed that salt stress negatively affects the absorption of water and nutrients, causing ionic and osmotic imbalances that reduce photosynthesis and growth of oil palm. Nitrogen deficiency resulted in a significant decrease in biomass and photosynthetic efficiency, while its excess altered inflorescence production. Manganese deficiency affected photosynthesis and leaf health, highlighting the importance of proper micronutrient management. Auxins were shown to be effective in inducing parthenocarpy and increasing oil production, although their use requires careful management to avoid oxidative stress. Finally, it is concluded that the precise management of light, water and CO2 is crucial to optimize photosynthesis and the sustainability of oil palm cultivation.v
Abidin, A., Wong, Y., Rahman, N., Idris, Z., & Yusof, Z. (2016). Osmotic, oxidative and salinity stresses upregulate the expressions of thiamine (Vitamin B1) biosynthesis genes (THIC and THI1/THI4) in oil palm (Elaies guineensis). Journal Oil Palm Research, 28(3); 308-319. http://jopr.mpob.gov.my/wpcontent/uploads/2016/09/joprv28sept-aisamuddin.pdf
Abidin, A., Wong, Y., Rahman, S., Idris, H., & Yusof, B. (2016). Osmotic, oxidative and salinity stresses upregulate the expressions of thiamine (Vitamin B1) biosynthesis genes (THIC and THI1/THI4) in oil palm (Elaies guineensis). J. Oil Palm Res, 28(3), 308-319. http://jopr.mpob.gov.my/wp-content/uploads/2016/09/joprv28sept-aisamuddin.pdf
Aleman, L., Combatt, E., & Arrieta, A. (2021). Effect of Salinization by NaCl on the Growth of African Palm (Elaeis guineensis, Jacq). Revista de Chimie, 72(2), 83–93. https://doi.org/10.37358/rc.21.2.8422
Apichatmeta, K., Sudsiri, C. J., & Ritchie, R. J. (2017). Photosynthesis of oil palm (Elaeis guineensis). Scientia Horticulturae, 214, 34-40. https://www.sciencedirect.com/science/article/pii/S0304423816305726
Ariffin, M. R., Ahmed, O. H., Isa, I. M., & Khairuddin, M. N. (2019). Effects of moisture level on nitrogen availability in tropical peat soil cultivated with oil palm (Elaeis guineensis, Jacq.). AGRIVITA, Journal of Agricultural Science, 41(1), 166-174. https://agrivita.ub.ac.id/index.php/agrivita/article/view/2007
Ashraf, A., Zulkefly, S., Adekunle, S., & Samad, M. (2017). Growth and biomass yield of oil palm (Elaeis guineensis) seedlings as influenced by different rates of vermicompost. European Journal of Engineering and Technology Research, 2(8), 17-21. https://www.ejeng.org/index.php/ejeng/article/view/405/188
Aucique, P., Carlos, E., Daza, S., & Romero, H. M. (2012). Efecto del etileno en el crecimiento y desarrollo de la palma de aceite (Elaeis guineensis. Jacq.), en fase de vivero. https://repositorio.fedepalma.org/handle/123456789/85538
Ayala, I. M., & Gómez, P. L. (2000). Identificación de variables morfológicas y fisiológicas asociadas con el rendimiento en materiales de palma de aceite (Elaeis guineensis, Jacq.). Palmas, 21(especial), 10-21. https://publicaciones.fedepalma.org/index.php/palmas/article/view/754/754
Ballen, M. (2019). Análisis Mediante el estado del arte de los efectos de las aplicaciones de Fitohormonas en la palma de aceite (Elaeis guineensis) para la modificación del sexo en campo experimental Palmar La Vizcaína. Biblioteca Universidad de Cundinamarca, (5-10). https://repositorio.ucundinamarca.edu.co/bitstream/handle/20.500.12558/1675/AN%C3%81LISIS%20MEDIANTE%20EL%20ESTADO%20DEL%20ARTE%20DE%20LOS%20EFECTOS%20DE%20LAS%20APLICACIONES%20DE%20FITOHORMONAS%20EN%20LA%20PAL.pdf?sequence=1
Barrios, R., Del Valle, M., Rivas, E., Fariñas, J., Salazar, J., Rodríguez, G. (2011). Efecto del déficit hídrico sobre el ciclo productivo de la palma aceitera en el estado Monagas, Venezuela. Agronomía Tropical. 61 (3-4) 267 – 274. https://ve.scielo.org/pdf/at/v61n3-4/art09.pdf
Bayona-Rodríguez, Cristihian Jarri ; Ochoa-Cadavid, Iván ; Romero, Hernán Mauricio Impacts of the dry season on the gas exchange of oil palm (Elaeis guineensis) and interspecific hybrid (Elaeis oleífera x Elaeis guineensis) progenies under field conditions in eastern Colombia.(2016). Agronomía colombiana,34(3),329 – 335. https://www.redalyc.org/articulo.oa?id=180350123004
Benavides, A. (2003) Fotosíntesis: Diferencias en las vías metabólicas C3, C4, CAM. Repositorio, Universidad nacional del nordeste. https://exa.unne.edu.ar/biologia/fisiologia.vegetal/Fotosintesis%20C3,C4%20y%20CAM.pdf
Bittencourt, C., Carvalho da Silva, T., Rodrigues Neto, J., Vieira, L., Leão, A., de Aquino Ribeiro, J., Verardi, P., Ferreira de Sousa, C., & Souza Jr, M. (2022). Insights from a Multi-Omics Integration (MOI) Study in Oil Palm (Elaeis guineensis Jacq.) Response to Abiotic Stresses: Part One—Salinity. Plants, 11(13), 1755. https://doi.org/10.3390/plants11131755
Boujenna A., Martos, V., García del Moral, B. García del Moral, L. (2022). Determinación semicuantitativa de puntos de compensación para el CO2 en plantas C3 y C4 como práctica experimental en la docencia Eco fisiología Vegetal. Reidocrea, 11(21), 239-244. https://digibug.ugr.es/handle/10481/74316
Broschat, T. K. (2009). Palm nutrition and fertilization. HortTechnology, 19(4), 690-694. https://doi.org/10.21273/HORTTECH.19.4.690
Carvalho, R., Travassos, L., Gomes, Z., Paulino, L., Scherwinski, J., Mehtab,A.(2014). Proteomic identification of differentially expressed proteins during the acquisition of somatic embryogenesis in oil palm (Elaeis guineensis Jacq.). Journal Of Proteomics 104, 112 – 127. https://www.sciencedirect.com/science/article/abs/pii/S1874391914001353?fr=RR-2&ref=pdf_download&rr=810583a2abc6f78a
Cayón, D. G., Avellaneda, C. A., & Rodríguez, F. (2007). Aspectos fisiológicos asociados a la Marchitez letal de la palma de aceite. Palmas, 28(especial,), 373-382. https://publicaciones.fedepalma.org/index.php/palmas/article/download/1273/1273
Chaves-Barrantes, N. F., & Gutiérrez‐Soto, M. V. (2016). Respuestas al estrés por calor en los cultivos. i. Aspectos moleculares, bioquímicos y siológicos. Agronomía mesoamericana, 28(1), 237. https://doi.org/10.15517/am.v28i1.21903
Corley, R., Hardon, J & Tan, G. (1971) Análisis del crecimiento de la palma aceitera (Elaeis guineensis JACQ.) I. Estimación de parámetros de crecimiento y aplicación en mejoramiento genético. Euphytica (20); 307-315. https://link.springer.com/article/10.1007/BF00056093
Crespo Gonzalez, J. J., Ruiz Villadiego, O. S., & Ospino Villalba, K. S. (2020). Determinación de nitrógeno foliar en palma de aceite con espectroscopía en el infrarrojo medio (mir) y cercano (nir) por el método de regresión de mínimos cuadrados parciales de componentes principales (pls). Revista De Investigación Agraria Y Ambiental, 11(2), 43-57. https://doi.org/10.22490/21456453.3206
Cruz, V., Paredes, E., Vega, C., Bernal, G., Sánchez, J., Jaramillo, R., Calvache Ulloa, M. (2020). Relación entre el contenido clorofílico sobre el estado nutrimental en palma aceitera (Elaeis guineensis Jacq). Revista Alfa, 2(4), 50–60. https://doi.org/10.33996/revistaalfa.v2i4.37
Demidchik, V. (2015). Mecanismos de estrés oxidativo en plantas: de la química clásica a la biología celular. Botánica ambiental y experimental, 109, 212-228. https://doi.org/10.1016/j.envexpbot.2014.06.021
Dussán, S. Villegas, D. Miranda, D. (2016). Efecto de la deficiencia de N, P, K, Mg, Ca y B sobre la acumulación y distribución de la masa seca en plantas de guayaba (Psidium guajavaL.) var. ICA Palmira II en fase de vivero. http://www.scielo.org.co/scielo.php?pid=S2011-21732016000100004&script=sci_arttext
Ferreira, F., Carvalho, T., Rios, L., Belo, V., Pereira, A., Mota, M., Coiti, R., Ferreira, C., Grynberg, P & Teixeira, M. (2022a) The early response of oil palm (Elaeis guineensis Jacq.) plants to water deprivation: Expression analysis of miRNAs and their putative target genes, and similarities with the response to salinity stress. Frontiers in Plant Science, (13). https://doi.org/10.3389/fpls.2022.970113
Ferreira, T., Ferreira, J., Leão, A., Ferreira, C., & Souza, M. (2022b). Structural and functional analysis of stress-inducible genes and their promoters selected from young oil palm (Elaeis guineensis) under salt stress. BMC Genomica, 23(1); 735. https://link.springer.com/article/10.1186/s12864-022-08926-6
Ferreira, T., Leão, A., Ferreira, C., & Souza, M. (2021). Genes highly overexpressed in salt-stressed Young oil palm (Elaeis guineensis) plants. Revista Brasileira de Engenharia Agrícola e Ambiental. 25(12); 813-818. http://dx.doi.org/10.1590/1807-1929/agriambi.v25n12p813-818
Filho, W. R. L. L., Rodrigues, F. H. S., Ferreira, I. V. L., Correa, L. O., Da Cunha, R. L., & Pinheiro, H. A. (2021). Physiological responses of young oil palm (Elaeis guineensis jacq.) plants to repetitive water deficit events. Industrial Crops and Products, 172, 114052. https://doi.org/10.1016/j.indcrop.2021.114052
Gomes, F. P., Oliva, M. A., Mielke, M. S., de Almeida, A. A. F., Leite, H. G., & Aquino, L. A. (2008). Photosynthetic limitations in leaves of young Brazilian Green Dwarf coconut (Cocos nucifera L.‘nana’) palm under well-watered conditions or recovering from drought stress. Environmental and Experimental Botany, 62(3), 195-204. https://doi.org/10.1016/j.envexpbot.2007.08.006
Hafiz, M., Jaafar, H., Haniff, M & Rafi,M. (2009). Cambios en el crecimiento y los patrones fotosintéticos de plántulas de palma aceitera (Elaeis guineensis Jacq.) expuestas a CO a corto plazo2 Enriquecimiento en una cámara superior cerrada. Acta Physiol Plant. (32);305–313. https://link.springer.com/article/10.1007/s11738-009-0408-y#citeas
Hao, P., Zhu, J., Gu, A., Lv, D., Ge, P., Chen, G., ... & Yan, Y. (2015). An integrative proteome analysis of different seedling organs in tolerant and sensitive wheat cultivars under drought stress and recovery. Proteomics, 15(9), 1544-1563. https://doi.org/10.1002/pmic.201400179
Haryanti, S., Yaacob,A & Kah, G. (2016). itrogen Fertilization and its Effect on Boron Uptake and Distribution in Young Oil Palm. Applied Agricultural Resources (AAR), (11). https://d1wqtxts1xzle7.cloudfront.net/44759240/Nitrogen_Fertilization_and_its_Effect_on20160415-11241-nyalgt-libre.pdf?1460720626=&response-content-disposition=inline%3B+filename%3DNitrogen_Fertilization_and_its_Effect_on.pdf&Expires=1697078334&Signature=PeplcTD-DCdoiOVrDFqouAPra24v1FX9KE9Nd7kPKaVq4zllT-GYgSoO-WzPhaJTRdVRfGBLimO~1Y~B-3Nzu9-QVFwNq-0sD7qY7BmckoSZXbtg7LnxoWYR7iHwbKoj~jDn6InxS3lCS3JaxiahRee4bo8PaiAvv11IcZEwiiEj82qvIdX04P9O5XurIaeQhjOPoj2G8xUJ4Y7hBt6RLfpZXlLM--UwJi4tkZJUq4II66oNPzcW6CBvdUG630yuKjU9fDAkhdua8drTSpYK1GD6e8Th6QuJRDmNggKkm23MmxrIg55~56~e1iEnA4~CUs7bA2j0t~rgacwMbvOFDQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
Henson, I. E. (2004). Estimating maintenance respiration of oil palm. Oil Palm Bulletin, (48), 1-10. https://www.cabdirect.org/cabdirect/abstract/20043130026
Henson, I. E. (1991). Age-related changes in stomatal and photosynthetic characteristics of leaves of oil palm (Elaeis guineensis Jacq). Elaeis, 3(2), 336-48. http://jopr.mpob.gov.my/age-related-changes-in-stomatal-and-photosynthetic-characteristics-of-leaves-of-oil-palm-elaeis-guineensis-jacq/
Hernandez, J. (1993). Salt – induced oxidative stress mediated by activated oxygen species in pea leaf mitochondria. Physiologia Plantarum, 89, 103 – 108. https://www.academia.edu/4696037/Salt_induced_oxidative_stress_mediated_by_activated_oxygen_species_in_pea_leaf_mitochondria
Ibrahim, M., Jaafar, H., Harun, M., & Yusop, M. (2010). Changes in growth and photosynthetic patterns of oil palm (Elaeis guineensis Jacq.) seedlings exposed to short-term CO2 enrichment in a closed top chamber. Acta Physiologiae Plantarum, 32, 305-313. https://link.springer.com/article/10.1007/s11738-009-0408-y
Ikhajiagbe, B., Aituae, W. y Ogwu, MC (2022). Evaluación morfofisiología de plántulas de palma aceitera (Elaeis guineensis Jacq.) expuestas a condiciones de sequía simuladas. J Res. Palma Aceitera, 34 (1), 26-34. http://jopr.mpob.gov.my/wp-content/uploads/2021/11/joprinpress2021-ogwu.pdf
Instituto internacional de nutrición vegetal. (1998). Síntomas de deficiencias de nutrientes y desórdenes en palma aceitera Elaeis guineensis Jacq. Revista Informaciones agronómicas. 30, 26-59 http://nla.ipni.net/ipniweb/region/nla.nsf/e0f085ed5f091b1b852579000057902e/c093707b0327c2fe05257a40005f359f/$FILE/G%20Palma.002.pdf/G%20Palma.pdf
Jazayeri, S. M., Rivera, Y. D., Camperos-Reyes, J. E., & Romero, H. M. (2015). Physiological effects of water deficit on two oil palm (Elaeis guineensis Jacq.) genotypes. Agronomía Colombiana, 33(2), 164-173. https://doi.org/10.15446/agron.colomb.v33n2.49846
Jeyalakshmi,S & Radha, R.(2017). A REVIEW ON DIAGNOSIS OF NUTRIENT DEFICIENCY SYMPTOMS IN PLANT LEAF IMAGE USING DIGITAL IMAGE PROCESSING. Department of Computer Science, Guru Nanak College India, 7(4). https://ictactjournals.in/paper/IJIVP_Vol_7_Iss_4_Paper_7_1515_1524.pdf
Jin, L., Yarra, R., Zhou, L., & Cao, H. (2022). The auxin response factor (ARF) gene family in Oil palm (Elaeis guineensis Jacq.): Genome-wide identification and their expression profiling under abiotic stresses. Protoplasma, 259(1), 47-60. https://link.springer.com/article/10.1007/s00709-021-01639-9
Karimi, S., Rahemi, M., Maftoun, M., & Tavallali, V. (2009). Effects of long-term salinity on growth and performance of two pistachio (Pistacia L.) rootstocks. Australian Journal of Basic and Applied Sciences, 3(3), 1630-1639. https://www.cabdirect.org/cabdirect/abstract/20093184020
Kee, K. K., Goh, K. J., & Chew, P. S. (1995). Investigation into manganese deficiency in mature oil palms (E. guineensis) in Malaysia. Fertilizer research, 40, 1-6. https://link.springer.com/article/10.1007/BF00749857
Lamade, E., Tcherkez, G., Darlan, N., Rodrigues, R., Fresneau, C., Mauve, C., Lamothe-Sibold, M., Sketriené, D., & Ghashghaie, J. (2016). Natural 13C distribution in oil palm (Elaeis guineensis Jacq.) and consequences for allocation pattern. Plant, cell & environment, 39(1), 199-212. https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.12606
Lamz Piedra, A., y González Cepero, M. C. (2013). La salinidad como problema en la agricultura: la mejora vegetal una solución inmediata. Cultivos tropicales, 34(4), 31-42. http://scielo.sld.cu/scielo.php?pid=S0258-59362013000400005&script=sci_arttext&tlng=pt
Leão, A.P., Bittencourt, C.B., da Silva, T.L.C., Neto, J.C.R., Braga, I.D.O., Vieria, L.R., De Aquino, J.A., Verardi, P., Ferreira, C.A. & Souza, M.T. (2022). Insights from a Multi-Omics Integration (MOI) Study in Oil Palm (Elaeis guineensis, Jacq) Response to Abiotic Stresses: Part Two—Drought. Plants, 11(20), 2786. https://www.mdpi.com/2223-7747/11/20/2786
Lim, S. L., Subramaniam, S., Baset Mia, M. A., Rahmah, A. R. S., & Ghazali, A. H. A. (2023). Biotization of in vitro oil palm (Elaeis guineensis Jacq.) and its plant-microbe interactions. Frontiers in Plant Science, 14, 1150309. https://www.frontiersin.org/articles/10.3389/fpls.2023.1150309/full
Lopes, W., Santos, F., Ferreira, I., Oliveira, C., Lisboa, R & Pinheiro, H. (2021). Physiological responses of young oil palm (Elaeis guineensis Jacq.) plants to repetitive water deficit events. Industrias crops and products. (72); 214052. https://www.sciencedirect.com/science/article/abs/pii/S0926669021008177
Lothier, J., Diab, H., Cukier, C., Limami, A & Tcherkez, G. (2020). Metabolic Responses to Waterlogging Differ between Roots and Shoots and Reflect Phloem Transport Alteration in Medicago truncatula. Plantas. 9 (10); 1373. https://doi.org/10.3390/plants9101373
Madison, J. (2018). Landscapes and resistance in the African diaspora: Five centuries of palm oil on Bahia's Dendê Coast. Journal of Rural Studies, 61. https://www-sciencedirect-com.bibliotecavirtual.unad.edu.co/science/article/pii/S0743016717305727
Martínez-Villavicencio, N., López-Alonzo, C. V., Pérez-Leal, R., & Basurto-Sotelo, M. (2011). Efectos por salinidad en el desarrollo vegetativo. Tecnociencia Chihuahua, 5(3), 156-161. https://doi.org/10.54167/tch.v5i3.694
Mata-Fernández, I., Rodríguez-Gamiño, M. L., López-Blanco, J., & Vela-Correa, G. (2014). Dinámica de la salinidad en los suelos. Revista Digital del Departamento El Hombre y su Ambiente, 1(5), 26-35. http://cbs1.xoc.uam.mx/e_bios/docs/2014/05_salinidad_en_suelos_espanol.pdf
Melgarejo, L. M., Romero, M., Hernández, S., Barrera, J., Solarte, M. E., Suárez, D., ... & Pérez, W. (2010). Experimentos en fisiología vegetal. Departamento de Biología, 124-129. https://repositorio.unal.edu.co/handle/unal/11144
Miller, G., Shulaev, V., & Mittler, R. (2008). Reactive oxygen signaling and abiotic stress. Physiologia plantarum, 133(3), 481-489. https://doi.org/10.1111/j.1399-3054.2008.01090.x
Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in plant science, 7(9), 405-410. https://doi.org/10.1016/S1360-1385(02)02312-9
Montoya, C., Mejia-Alvarado, F., Botero-Rozo, D., Ayala-Diaz, I., & Romero, H. (2023). Parthenocarpy-related genes induced by naphthalene acetic acid in oil palm interspecific O× G [Elaeis oleifera (Kunth) Cortés× Elaeis guineensis Jacq.] hybrids. Frontiers in Genetics, 14, 1099489. https://www.frontiersin.org/articles/10.3389/fgene.2023.1099489/full
Morales, D.; Rodríguez, P.; Sánchez-Blanco, M. de J. y Torrecillas, A. Efecto del estrés por NaCl en el crecimiento y las relaciones hídricas de diferentes variedades de arroz (Oryza sativa L.). Cultivos Tropicales, 2004, vol. 25, no. 4, p. 11-16.
Moreno, A., Camperos, J., Rivera, Y. y Romero, H.M. (2014). Cambios fisiológicos y bioquímicos en genotipos de palma de aceite como respuesta a dos saturaciones de aluminio en el suelo. Palmas, 35(2), 11-21. https://publicaciones.fedepalma.org/index.php/palmas/article/view/10976
Mosquera, L., Riaño, N., Arcila, J., Ponce, C. (1999). Fotosíntesis, respiración y fotorrespiración en hojas de café, Coffea sp. Cenicafé. 50(3) 215-221. https://www.cenicafe.org/es/publications/arc050%2803%29215-221.pdf
Munns, R. (2005). Genes and salt tolerance: bringing them together. New phytologist, 167(3), 645-663. https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.2005.01487.x
Munns, R. (2002), Fisiología comparada del estrés hídrico y salino. Planta, célula y medio ambiente, 25: 239-250. https://doi.org/10.1046/j.0016-8025.2001.00808.x
Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol., 59, 651-681. https://www.annualreviews.org/doi/abs/10.1146/annurev.arplant.59.032607.092911
Muñoz, R. (1981). Aspectos generales de la nutrición y fertilización Elaeis guineensis Jacq con énfasis en las condiciones colombianas. Temas de orientación agropecuaria. 149, 101-123. https://repository.agrosavia.co/handle/20.500.12324/23460
Muñoz. A. R. (1975). Las condiciones, c. e. a. y fertilización (Elaeis guineensis Jacq.). Con énfasis en las condiciones colombianas. https://repository.agrosavia.co/bitstream/handle/20.500.12324/23460/22594_3418.pdf?sequence=1
Oliveira de Oliveira, H., Gledson Luiz Salgado, d. C., Lorena, O. C., Walter Vellasco, D. S., Sidney Vasconcelos, d. N., Rafael Borges da, S. V., Guilherme Corrêa, d. O., Rodolfo Inacio, N. S., Reginaldo Alves Festucci-Buselli, & Hugo, A. P. (2019). Coupling physiological analysis with proteomic profile to understand the photosynthetic responses of young Euterpe oleracea palms to drought. Photosynthesis Research, 140(2), 189-205. https://doi.org/10.1007/s11120-018-0597-6
Oliveira, M. A. J. D., Bovi, M. L. A., Machado, E. C., Gomes, M. M. D. A., Habermann, G., & Rodrigues, J. D. (2002). Photosynthesis, stomatal conductance and transpiration in peach palm under water stress. Scientia Agricola, 59, 59-63. https://doi.org/10.1590/S0103-90162002000100008
Orjuela, R. H. Y. (2019). Nutrition and fertilization with micronutrients and their effect on oil palm (Elaeis guineensis Jacq). Review. Ciencia y Tecnología Agropecuaria, 4(2), 93-110. https://ojs.unipamplona.edu.co/index.php/rcyta/article/view/1068/1127
Owen, E. (1993). Requirements of micronutrients for the oil palm crop (Elaeis guineensis Jacq.). Fedepalma,14. Palmas, 14(4), 9-25. https://publicaciones.fedepalma.org/index.php/palmas/article/view/388/388
Owen, E. J. (1992). Fertilización de la palma africana (Elaeis guineensis Jacq.) en Colombia. Palmas, 13(2), 39-64. https://publicaciones.fedepalma.org/index.php/palmas/article/download/344/344
Parihar, P., Singh, S., Singh, R., Singh, VP & Prasad, SM. (2015). Efecto del estrés salino en las plantas y sus estrategias de tolerancia: una revisión. Investigación sobre ciencia ambiental y contaminación, 22, 4056-4075. https://link.springer.com/article/10.1007/s11356-014-3739-1
Partida-Ruvalcaba, L., de Jesús Velázquez-Alcaraz, T., Acosta-Villegas, B., & Angulo-Gaxiola, C. E. (2006). Extractos vegetales y su efecto en la conductividad eléctrica de dos suelos salinos y de soluciones. Terra Latinoamericana, 24(1), 83-89. https://www.redalyc.org/pdf/573/57311494010.pdf
Paul, S., Gayen, D., Datta, SK & Datta, K. (2015). La disección del proteoma de la raíz de cultivares de arroz transgénicos desentraña alteraciones metabólicas y la acumulación de nuevas proteínas que responden al estrés bajo estrés por sequía. Ciencia de las Plantas, 234, 133-143. https://doi.org/10.1016/j.plantsci.2015.02.006
Perdomo, J. A., Capó-Bauçà, S., Carmo-Silva, E., & Galmés, J. (2017). Rubisco and rubisco activase play an important role in the biochemical limitations of photosynthesis in rice, wheat, and maize under high temperature and water deficit. Frontiers in plant science, 8, 490. https://doi.org/10.3389/fpls.2017.00490
Pérez, Á. P., & Cayón, G. (2010). Metabolismo de carbohidratos en palmas de aceite (Elaeis guineensis Jacq.) afectadas por marchitez letal. Agronomía Colombiana, 28(2), 181-187. http://www.scielo.org.co/scielo.php?pid=S0120-99652010000200007&script=sci_arttex
Rey, L., Gómez, P., Ayala, I., Delgado, W., & Rocha, P. (2004) Colecciones genéticas de palma de aceite (Elaeis guineensis Jacq) y (Elaeis oleífera) (HBK) de Cenipalma: características de importancia para el sector palmicultor. Revista Palmas, 25(especial) 39-48. https://publicaciones.fedepalma.org/index.php/palmas/article/view/1065/1065
Reyes, A. J., Álvarez – Herrera, J. G., Fernández, J. P. (2013). Papel del calcio en la apertura y el cierre estomático y sus interacciones con solutos compatibles. Una revisión. Revista Colombiana de Ciencias Hortícolas, 7(1), 111 – 122.
Ríos, L., Belo, V., Casari, R., Osorio, P., Ferreira, C., & Souza, M. (2020). Morphophysiological responses of young oil palm plants to salinity stress. Pesquisa Agropecuária Brasileira, 55. https://www.scielo.br/j/pab/a/4DkJnryBBcYqrZvK9Drhxyw/?lang=en&format=html#
Rivera, D., Cuenca, J & Romero, H. (2016). Respuestas fisiológicas de plántulas de palma de aceite (Elaeis guineensis Jacq.) a diferentes condiciones hídricas del suelo. Agronomía Colombia, 34 (2); 163-171. https://doi.org/10.15446/agron.colomb.v34n2.55568
Rivera-Mendes, Y. D., Cuenca, J. C., & Romero, H. M. (2016). Physiological responses of oil palm (Elaeis guineensis Jacq.) seedlings under different water soil conditions. Agronomía Colombiana, 34(2), 163-171. https://www.redalyc.org/journal/1803/180348900005/html/
Rivera-Méndez, Y. D., & Romero, H. M. (2017). Fitting of photosynthetic response curves to photosynthetically active radiation in oil palm. Agronomía Colombiana, 35(3), 323-329. https://doi.org/10.15446/agron.colomb.v35n3.63119
Romero, H, Ruíz Romero, R, Forero, D. Guataquira, S. (2023). Densidad de siembra e interceptación de luz de los cultivares híbridos interespecíficos OxG. Corporación Centro de Investigación en Palma de Aceite, Cenipalma. https://repositorio.fedepalma.org/handle/123456789/142800
Romero, H. M., Daza, E., Ayala-Díaz, I. Ruiz-Romero, R. (2021). Producción de aceite de palma alto oleico (APAO) a partir de frutos partenocárpicos en híbridos interespecíficos de palma de aceite utilizando ácido naftalenacético. (Traductor Arenas, C.) Palmas, 43(3), 18 -39. https://publicaciones.fedepalma.org/index.php/palmas/article/view/13914
Romero, H., Caicedo, A y Ayala, I. (2020). Utilización de ácido 1-naftalenacético (ANA) para incrementar la producción de aceite en palma africana (Elaeis guineensis jacq). Fedepalma, (576). https://publicaciones.fedepalma.org/index.php/palmicultor/article/view/12981/12828
Romero, H., Ayala, I., Ruíz, R. (2007). Eco fisiología de la palma de aceite. Palmas. 28(especial) 176-184. https://publicaciones.fedepalma.org/index.php/palmas/article/view/1254
Roowi, S. H., Ho, C. L., Alwee, S. S. R. S., Abdullah, M. O., & Napis, S. (2010). Isolation and characterization of differentially expressed transcripts from the suspension cells of oil palm (Elaeis guineensis Jacq.) in response to different concentration of auxins. Molecular Biotechnology, 46, 1-19. https://link.springer.com/article/10.1007/s12033-010-9262-9
Sánchez, E., Soto, J. M., Ruiz, J. M., & Romero, L. (2006). Asimilación de nitrógeno en raíces y hojas de frijol ejotero: deficiencia vs toxicidad de nitrógeno. Revista Fitotecnia Mexicana, 29(3), 187-187. https://www.revfitotecnia.mx/index.php/RFM/article/view/784
Santamaría, M., Toledo, D., López, A., Pacheco, J., Saucedo, M., & Madariaga, A. (2023). Impacto del cambio climático sobre la fotosíntesis, fotorrespiración y respiración de plantas C3. Boletín de Ciencias Agropecuarias del ICAP, 9(Especial), 6-11. https://repository.uaeh.edu.mx/revistas/index.php/icap/article/view/8764
Santamaría-César, J., Figueroa-Viramontes, U., & del Consuelo Medina-Morales, M. (2004). Productividad de la alfalfa en condiciones de salinidad en el distrito de riego 017, Comarca Lagunera. Terra Latinoamericana, 22(3), 343-349. https://www.redalyc.org/pdf/573/57322311.pdf
Schiavon, M., Pedroza, A., Leinauer, B., Suarez, D. L., & Baird, J. H. (2017). Varying evapotranspiration and salinity level of irrigation water influence soil quality and performance of perennial ryegrass (Lolium perenne L.). Urban Forestry & Urban Greening, 26, 184-190. https://doi.org/10.1016/j.ufug.2017.01.006
Sembiring, M., Jefri, Sakiah, & Wahyuni, M. (2018). The inoculation of mycorrhiza and Talaromyces pinophilus toward the improvement in growth and phosphorus uptake of oil palm seedlings (Elaeis guineensis Jacq) on saline soil media. Bulgarian Journal of Agricultural Science, 24(4), 617–622. https://www.agrojournal.org/24/04-12.pdf
Shilev, S. (2020). Plant-growth-promoting bacteria mitigating soil salinity stress in plants. Applied Sciences, 10(20), 7326. https://www.mdpi.com/2076-3417/10/20/7326
Shulaev V, Cortes D, Miller G, Mittler R (2008) Metabolómica para la respuesta al estrés de las plantas. Planta Physiol 132, 199–208. https://doi.org/10.1111/j.1399-3054.2007.01025.x
Silva, P. A., Cosme, V. S., Rodrigues, K. C., Detmann, K. S., Leão, F. M., Cunha, R. L., Festtucci, B.R., DaMatta, F.M. & Pinheiro, H. A. (2017). Drought tolerance in two oil palm hybrids as related to adjustments in carbon metabolism and vegetative growth. Acta physiologiae plantarum, 39, 1-12. https://doi.org/10.1007/s11738-017-2354-4
Silva, P. A., Oliveira, I. V., Rodrigues, K. C., Cosme, V. S., Bastos, A. J., Detmann, K. S., Cunha, R. L. Festtucci, B.R., DaMatta, F.M. & Pinheiro, H. A. (2016). Leaf gas exchange and multiple enzymatic and non-enzymatic antioxidant strategies related to drought tolerance in two oil palm hybrids. Trees, 30, 203-214. https://doi.org/10.1007/s00468-015-1289-x
Song, Z., Wang, L., Lai, C., Lee, M., Yang, Z & Yue. G. (2022) "EgSPEECHLESS Responses to Salt Stress by Regulating Stomatal Development in Oil Palm". International Journal of Molecular Sciences, 23(9); 4659. https://doi.org/10.3390/ijms23094659
Sparjanbabul, D.S. Kumar, P.N., Motukuri1, S.R.K., Ramajayam, D., Susanthi, B & Prasanna, H.S. (2021). Effect of culture media, auxins and genotypes on plantlet regeneration from oil palm (Elaeis guineensis Jacq.) zygotic embryos through somatic embryogenesis. Journal of Environmental Biology,42, 1232-1238. http://doi.org/10.22438/jeb/42/5/MRN-1706
Sun, C., Cao, H., Shao, H., Lei, X., & Xiao, Y. (2011). Growth and physiological responses to water and nutrient stress in oil palm. African Journal of Biotechnology, 10(51), 10465-10471. https://www.ajol.info/index.php/ajb/article/view/95988
Suresh, K., Nagamani, C., Kantha, D. L., & Kumar, M. K. (2012). Changes in photosynthetic activity in five common hybrids of oil palm (Elaeis guineensis Jacq.) seedlings under water deficit. Photosynthetica, 50, 549-556. (2012). https://doi.org/10.1007/s11099-012-0062-2
Suresh, K., Nagamani, C., Ramachandrudu, K., & Mathur, R. K. (2010). Gas-exchange characteristics, leaf water potential and chlorophyll a fluorescence in oil palm (Elaeis guineensis Jacq.) seedlings under water stress and recovery. Photosynthetica, 48, 430-436. https://doi.org/10.1007/s11099-010-0056-x
Surya, M., Rao, B., Vijaya, V., Suresh, K & Kalpana, S. (2018). Influence of Different Methods and Levels of Irrigation on Photosynthetic Pigments in Relation to Yield of Oil Palm (Elaeis guineensis Jacq.). International Journal of Current Microbiology and Applied Sciences. 7 (2); 26-35. https://doi.org/10.20546/ijcmas.2018.702.005
Takahashi, S., & Badger, M. R. (2011). Photoprotection in plants: a new light on photosystem II damage. Trends in plant science, 16(1), 53-60. https://doi.org/10.1016/j.tplants.2010.10.001
Takahashi, S., & Murata, N. (2008). How do environmental stresses accelerate photoinhibition? Trends in plant science, 13(4), 178-182. https://doi.org/10.1016/j.tplants.2008.01.005
Tester, M., & Davenport, R. (2003). Na+ tolerance and Na+ transport in higher plants. Annals of botany, 91(5), 503-527. https://academic.oup.com/aob/article-abstract/91/5/503/157102
Tezara, W., Torres,T., Loyaga, D., Nazareno, R., Reynel, V & Bolaños, M. (2021) Actividad fotosintética de genotipos de palma aceitera (Elaeis guineensis) e híbridos interespecíficos (Elaeis oleifera × Elaeis guineensis), y respuesta de híbridos al déficit hídrico. Scientia Horticulturae . (287); 110263. https://www.sciencedirect.com/science/article/abs/pii/S0304423821003708?fr=RR-2&ref=pdf_download&rr=81a4a86f7960f7b0
Timothy, K. & Broschat. (2017). Nitrogen Deficiency in Palms. UF/IFAS Extensiòn University of Florida. 19(4); 1-2. https://www.growables.org/information/TropicalFruit/documents/NitrogenDeficiencyInPalms.pdf
Timothy, K., Broschat, T. (2014). Manganese Deficiency in Palms. UF/IFAS Extensiòn University of Florida, 19(4); 1-2. https://www.growables.org/information/TropicalFruit/documents/ManganeseDeficiencyInPalms.pdf
Timothy, K & Broschat. (2009). Palm Nutrition and Fertilization. HortTechnology, 19(4); 690-694. https://doi.org/10.21273/HORTTECH.19.4.690
Tucci, M. L. S., Erismann, N. M., Machado, E. C., & Ribeiro, R. V. (2010). Diurnal and seasonal variation in photosynthesis of peach palms grown under subtropical conditions. Photosynthetica, 48, 421-429. https://doi.org/10.1007/s11099-010-0055-y
Viana, J. L., Zolin, C. A., da Silva, V. Q. R., & de Souza, A. P. (2019). Physiological and productive responses of irrigated oil palm in early development phase. Irriga, 24(2). https://doi.org/10.15809/irriga.2019v24n2p405-423
Viégas, I. de J. M., Silva, S. P. da, Souza, L. C. de, Ferreira, E. V. de O., Costa, M. G., & Barata, H. da S. (2023). A new approach to the nutritional status of manganese in oil palm plants cultivated in the eastern Amazon. Revista Ceres, 70(4), 105–116. https://www.scielo.br/j/rceres/a/FmbhJf6DMmMYJM6PQNRrwSm/
Vieira, L. R., Silva, V. N. B., Casari, R. A. das C. N., Carmona, P. A. O., Sousa, C. A. F. de, & Souza Junior, M. T. (2020). Morphophysiological responses of young oil palm plants to salinity stress. Pesquisa Agropecuaria Brasileira, 55, e01835. https://doi.org/10.1590/s1678-3921.pab2020.v55.01835
Villalobos, E. (2001). Fisiología de la producción de los cultivos tropicales. Fascículo I. Repositorio universidad de Costa Rica. https://books.google.es/books?hl=es&lr=&id=30uScIaUo94C&oi=fnd&pg=PA18&dq=Fisiolog%C3%ADa+de+la+Producci%C3%B3n+de+Los+Cultivos+Tropicales,+Parte+1&ots=u0rGPlWV5X&sig=CcAvHl6QBo-EUErGg4icVgOkskQ#v=onepage&q=Fisiolog%C3%ADa%20de%20la%20Producci%C3%B3n%20de%20Los%20Cultivos%20Tropicales%2C%20Parte%201&f=false
Villareal, L., Soto, A., Centeno, J., Bravo, V. (2022). Una mirada fisiológica a la polinización artificial con ácido α-naftalenacético a la producción de palma aceitera. Ciencia Latina Revista Científica Multidisciplinar, 6(2), 1963-1978. https://ciencialatina.org/index.php/cienciala/article/view/2004/2888
Villarreal - Villafuerte, L., Celi Soto, A., Centeno Alcívar, J., & Bravo Yandún, V. (2022). Una mirada fisiológica a la polinización artificial con ácido α-naftalenacético a la producción de palma aceitera. Ciencia Latina Revista Científica Multidisciplinar, 6(2), 1963-1978. https://ciencialatina.org/index.php/cienciala/article/view/2004
Winner H., & Hoong, W. (2012). Effects of salinity on fresh fruit bunch (FFB) production and oil-to-bunch ratio of oil palm (Elaeis guineensis) planted in reclaimed mangrove swamp areas in Sabah. Oil Palm Bulletin, (65), 12-20. https://www.cabdirect.org/cabdirect/abstract/20133151374
Yepes, R. (2019). Nutrición y fertilización con micronutrientes y su efecto en palmade aceite (Elaeis guineensis Jack). Revista Ciencia y Tecnología Agropecuaria. 4(2), 93-110. https://ojs.unipamplona.edu.co/index.php/rcyta/article/view/1068/1127
Zhou, L., Yarra, R., Jin, L., & Cao, H. (2020). Genome-wide identification and expression analysis of MYB gene family in oil palm (Elaeis guineensis Jacq.) under abiotic stress conditions. Environmental and Experimental Botany. 180; 104245. https://doi.org/10.1016/j.envexpbot.2020.104245
Zhu, J. K. (2003). Regulation of ion homeostasis under salt stress. Current opinion in plant biology, 6(5), 441-445. https://www.sciencedirect.com/science/article/pii/S1369526603000852
Copyright (c) 2025 Agricolae & Habitat

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.