Origen de masas de aire en cuatro ciudades de Colombia mediante el modelo HYSPLIT

Omar Javier Ramírez Hernández

Resumen


El objetivo de esta investigación fue identificar los orígenes de las masas de aire en cuatro ciudades colombianas (Bogotá, Cartagena de Indias, Pasto y Leticia) que tienen el potencial de afectar la calidad del aire urbano al transportar material particulado a largas distancias desde diferentes puntos geográficos. Metodológicamente se utilizó información proporcionada por el modelo HYSPLIT versión 4, con el cual se midieron retro-trayectorias para un periodo de análisis de un año (desde el 01 de enero a 31 de diciembre de 2012). El cálculo de retrotrayectorias es de gran utilidad para determinar la zona de partida de las masas de aire que llegan en un momento determinado, a un lugar concreto y a una altura definida. De esta forma se obtuvieron retro-trayectorias diarias registradas a las 12:00 UTC (tiempo universal coordinado), con cálculos a intervalos de seis horas, representando el transporte realizado por la masa de aire los cinco días anteriores (120 h). Las alturas isentrópicas consideradas fueron de 750, 1500 y 2500 m medidas desde el nivel del suelo. Según los resultados obtenidos, el origen de masas de aire más frecuente en Cartagena de Indias durante 2012 fue Caribe (45%), seguido por Continental (36%). En Bogotá fue Continental (77%), seguido por Atlántico Este (19%). En Pasto fue Pacífico (72%), seguido por Continental (23%). Y en Leticia fue Continental (99%) seguido por el origen Atlántico Este (1%).


Palabras clave


calidad del aire; meteorología; modelación atmosférica; retro-trayectorias; transporte de contaminantes.

Texto completo:

PDF

Referencias


Artinano, B., Salvador, P., Alonso, D., Querol, X. & Alastuey, A. (2003). Anthropogenic and natural influence on the PM10 and PM2.5 aerosol in Madrid (Spain). Analysis of high concentration episodes. Environmental Pollution 125, 453-465.

Boian, C. & Kirchhoff, V. (2004). Measurements of CO in an aircraft experiment and their correlation with biomass burning and air mass origin in South America. Atmospheric Environment 38, 6337–6347.

Carnelley, T. & Le, X. (2001). Correlation between chemical characteristics and biological reactivity of particulate matter in ambient air. Alberta: Environmental Sciences Division.

Coury, C. & Dillner, A.M. (2007). Trends and sources of particulate matter in the Superstition wilderness using air trajectory and aerosol cluster analysis. Atmospheric Environment 41, 9309-9323.

Cowie, G., Lawson, W. & Kim, N. (2010). Australian dust causing respiratory disease admissions in some North Island, New Zealand Hospitals. Journal of the New Zealand Medical Association 123 (1311).

Davis, R., Normile, C., Sitka, L., Hondula, D., Knight, D., Gawtry, S. & Stenger, P. (2010). A comparison of trajectory and air mass approaches to examine ozone variability. Atmospheric Environment 44, 64–74.

Draxler, R. (1999). HYSPLIT4 user’s guide. NOAA Tech. Memo. ERL ARL-230, NOAA Air Resources Laboratory, Silver Spring, MD.

Draxler, R. & Hess, G. (1997). Description of the HYSPLIT_4 modeling system. NOAA Tech. Memo. ERL ARL-224, NOAA Air Resources Laboratory, Silver Spring, MD, 24 pp.

Draxler, R. & Hess, G. (1998). An overview of the HYSPLIT-4 modelling system for trajectories, dispersion and deposition. Australian Meteorology Magazine 47, 295–308.

Escudero, M., Stein, A., Draxler, R., Querol, X., Alastuey, A., Castillo, S. & Avila, A. (2011). Source apportionment for African dust outbreaks over the Western Mediterranean using the HYSPLIT model. Atmospheric Research 99, 518–527.

González, S. (2009). Paralelización de la obtención de datos de entrada del modelo de concentraciones de HYSPLIT. Serie de Notas Técnicas Digitales del Centro de Investigación Atmosférica de Izaña. Nota Técnica Digital No. 2. Agencia Estatal de Meteorología. Ministerio de Medio Ambiente, y Medio Rural y Marino.

Jorba, O., Pérez, C., Rocadenbosch, F. & Baldasano, J. M. (2004). Cluster analysis of 4-day backward trajectories arriving in the Barcelona area Spain, from 1997 to 2002. Journal of Applied Meteorology 43, 887-901.

Kedia, S. & Ramachandran, S. (2008). Latitudinal and longitudinal variation in aerosol characteristics from Sun photometer and MODIS over the Bay of Bengal and Arabian Sea during ICARB. Journal of Earth System Science 117, 375-387

Merbitz, H., Fritz, S. & Schneider, Ch. (2012). Mobile measurements and regression modeling of the spatial particulate matter variability in an urban area. Science of the Total Environment 438, 389–403.

Middleton, N., Yiallouros, P., Kleanthous, S., Kolokotroni, O., Schwartz, J., Dockery, D., Demokritou, P. & Koutrakis, P. (2008). A 10-year time-series analysis of respiratory and cardiovascular morbidity in Nicosia, Cyprus: The effect of shortterm changes in air pollution and dust storms. Environmental Health 7 (39), 1-16.

Pongkiatkul, P. & Kim, N. (2007). Assessment of potential long-range transport of particulate air pollution using trajectory modeling and monitoring data. Atmospheric Research 85, 3-17.

Salvador, P., Artinano, B., Querol, X. & Alastuey, A. (2008). A combined analysis of backward trajectories and aerosol chemistry to characterise long-range transport episodes of particulate matter: the Madrid air basin, a case study. Science of the Total Environment 390, 495-506.

Stefan, S., Necula, C. & Georgescu, F. (2010). Analysis of long-range transport of particulate matters in connection with air circulation over Central and Eastern part of Europe. Physics and Chemistry of the Earth 35, 523–529.

Tang, L., Haeger-Eugensson, M., Sjöberg, K., Wichmann, J., Molnár, P. & Sallsten, G. (2014). Estimation of the long-range transport contribution from secondary inorganic components to urban background PM10 concentrations in south-western Sweden during 1986–2010. Atmospheric Environment 89, 93-101.

Uno, I., Eguchi, K., Yumimoto, K., Takemura, T., Uematsu, M., Liu, Z., Wang, Z., Hara, Y. & Sugimoto, N. (2009). Asian dust transported one full circuit around the globe. Nature Geoscience 2, 557-560.

Vardoulakis, S. & Kassomenos, P. (2008). Sources and factors affecting PM10 levels in two European cities: implications for local air quality management. Atmospheric Environment 42, 3949-3963.

Viana, M., Querol, X., Alastuey, A., Cuevas, E. & Rodríguez, S. (2002). Influence of African dust on the levels of atmospheric particulates in the Canary Islands air quality network. Atmospheric Environment 36, 5861-5875.

Wagstrom, K. & Pandis, S. (2011). Contribution of long range transport to local fine particulate matter concerns. Atmospheric Environment 45, 2730-2735.

Weber, S. (2009). Spatio-temporal covariation of urban particle number concentration and ambient noise. Atmospheric Environment 43, 5518-5525.

WHO - World Health Organization (1999). Air Quality Guidelines. Geneva: World Health Organization.

WHO - World Health Organization (2006). WHO Air Quality Guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide: global update 2005. Geneva: World Health Organization.

WHO - World Health Organization (2011). Health in the green economy: health co-benefits of climate change mitigation – housing sector. Geneva: World Health Organization.




DOI: https://doi.org/10.22490/21456453.935

Métricas de artículo

Vistas de resumen.
a description of the source 805




Cargando métricas ...

Enlaces refback

  • No hay ningún enlace refback.




ISSN: 2145-6097 - e-ISSN: 2145-6453 - DOI: https://doi.org/10.22490/issn.2145-6453

Licencia de Creative Commons
Revista de Investigación Agraria y Ambiental is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.