Typesetting
in Revista de Investigación Agraria y Ambiental
BÚSQUEDA DE BACTERIAS OXIDADORAS DE AZUFRE PARA SU POTENCIAL USO EN LA PRODUCCIÓN DE BIOGÁS DE ALTA PUREZA
Resumen
La generación de residuos es continua y creciente. En Colombia se producen al día aproximadamente 31000 toneladas de residuos sólidos, de las cuales 85% terminan en los rellenos sanitarios, que son responsables del 9%-15% de las emisiones de CH4. Estos residuos, constituyen una oportunidad para la producción de biogás, el cual contiene CH4, y trazas de CO2, H2S y agua. Sin embargo, para la producción de biogás de alta pureza es de vital importancia eliminar el H2S, ya que es toxico y corrosivo. Bajo este contexto, el objetivo de este estudio fue aislar y seleccionar microorganismos oxidadores de azufre para su potencial uso en la producción de biogás de alta pureza. La metodología desarrollada fue: (i) evaluación de diferentes estrategias para el aislamiento de estos microorganismos, (ii) evaluación de la capacidad de oxidación de azufre de las cepas aisladas, y (iii) evaluación de diferentes matrices para la inmovilización de cepas seleccionadas. En este estudió se aislaron 17 cepas bacterianas, las cuales tienen la capacidad de oxidación de azufre, destacándose las cepas M14-C2 y M15-C1 (15,3 y 14,9 mg SO4/L, respectivamente). De otra parte, se determinó que el bagazo de caña de azúcar permite una mayor capacidad de oxidación de azufre de las cepas M14-C2 y M15-C1 (23,92 y 24,15 mg SO4/L, respectivamente). Los resultados obtenidos en este estudio permitieron aislar y seleccionar bacterias con potencial capacidad de oxidación de azufre, para posteriormente ser utilizadas en la producción de biogás de alta pureza.
Main Text
Introducción
El crecimiento poblacional en los últimos tres siglos ha aumentado de manera significativa, trayendo consigo el incremento de consumo de recursos naturales y la generación de residuos sólidos, líquidos y gaseosos que son arrojados al medio ambiente, viéndose afectadas principalmente las grandes ciudades por el asentamiento de un grupo significativo de habitantes (Guerrero et al., 2013). El reglamento técnico del sector de agua potable y saneamiento básico ambiental (RAS) informa que en el 2009 las áreas urbanas de Colombia generaron 25.079 millones de gramos (Mg) de residuos sólidos diariamente, de los cuales el 92,8% (23.285,5 Mg/día) tuvieron una disposición final adecuada en rellenos sanitarios o plantas integrales de tratamiento de residuos sólidos; el 7,16% restante, correspondiente a 1.796 Mg/día, fue dispuesto en botaderos a cielo abierto, en cuerpos de agua, mediante quemas o enterradas en condiciones inadecuadas (Avendaño, 2015).
De la combinación de los anteriores procesos aeróbicos y anaeróbicos se obtiene una serie de gases los cuales pueden aprovecharse en la obtención de fertilizante agrícola (compost) y gas biológico (compuesto principalmente por 40% CO2 y 60% CH4). Dentro de los residuos del proceso de descomposición, el gas metano puede usarse debido a su clasificación como un gas combustible de bajo costo con uso térmico ("5500 Kcal/ m3) o eléctrico (Escalante et al., 2009).
Sin embargo, para el uso del gas metano es necesario oxidar o eliminar las trazas de H2S, ya que es un compuesto tóxico para la salud y corrosivo, lo cual se puede lograr mediante procesos químicos y/o biológicos (Zapata, 2004). Los métodos químicos pueden resultar altamente contaminantes para el medio ambiente, mientras los biológicos generan una baja contaminación, como es el uso de bacterias oxidadoras de azufre, siendo una alternativa apropiada para aprovechar este recurso de fácil obtención y al mismo tiempo contribuir al cuidado del medio ambiente (Li et al., 2015).
Las bacterias oxidantes de azufre obtienen energía para su metabolismo a partir de energía lumínica o directamente de las reacciones oxidantes, donde utilizan oxígeno, nitratos o nitritos como aceptor de electrones liberados durante la oxidación de sulfuros. Desde el punto de vista tecnológico, para la eliminación biológica de sulfuros, las más apropiadas son las bacterias quimiolitotróficas oxidantes de azufre. Este grupo de bacterias son filogenéticamente muy diversas (por ejemplo, Thiobacillus, Sulfolobus, Thermothrix, Beggiatoa y Thiothrix) y están ampliamente distribuidos en diferentes hábitats (Friedrich et al., 2001).
Colombia contiene ecosistemas que pueden ser considerados fuente potencial de microorganismos con capacidad de oxidación de azufre. Por lo tanto, el objeto de este estudio fue explorar ambientes ricos en este tipo de microorganismos y mediante aislamiento, seleccionar microorganismos oxidadores de azufre para ser empleados en futuros estudios de producción de biogás de alta pureza.
Materiales y métodos
Sitios de muestreo
Se tomaron muestras de agua provenientes de un manantial termal ubicado en Tabio, de aguas residuales de una industria metalmecánica, y de aguas de explotaciones mineras localizadas en el municipio de Mongui y Paz del Río, para el aislamiento de microorganismos oxidadores de azufre (Tabla 1). Las muestras se recolectaron en recipientes plásticos estériles de 10 ml y 600 ml y se transportaron a temperatura ambiente para su posterior análisis en el laboratorio.
Estrategias de aislamiento de microorganismos oxidadores de azufre
Para el aislamiento de los microorganismos tipos de medios de cultivo. En las tablas 2 y 3 oxidadores de azufre a partir de los sitios de se muestra la composición de los medios de muestreo analizados, se evaluaron diferentes cultivo empleados.
Los medios de cultivo evaluados se inocularon con 1 ml de cada uno de los sitios de muestreo analizados y se incubaron a 37°C hasta que se evidenció crecimiento (entre 2 a 4 semanas). Para los medios de cultivo que presentaron crecimiento positivo se realizó siembra masiva en medio sólido y se incubaron a 37°C durante 24h. Las colonias que crecieron individualmente se transfirieron a medio de cultivo fresco y el procedimiento se repitió al menos dos veces antes de que los cultivos se consideraran puros.
Caracterización fenotípica de las cepas aisladas
Las cepas aisladas se caracterizaron fenotípicamente evaluando características macroscópicas, morfología, coloración de Gram, presencia de esporas y motilidad siguiendo los protocolos descritos por Rubiano et al. (2013).
Evaluación de la capacidad de oxidación de azufre de los microorganismos aislados
La capacidad de oxidación de azufre de las cepas aisladas se determinó mediante la cuantificación de sulfatos a través del método nefelométrico (Bojaca, 2007). Las cepas se cultivaron medio básico 1, suplementadas con °S 10 g/L y se incubaron a 30°C durante 7 días. Transcurrido el tiempo de incubación, los cultivos se centrifugaron a 6000 rpm durante 30 min y se recuperó el sobrenadante. Posteriormente, se adicionaron 50 ml de cada muestra y 10 ml de solución Buffer A, y se realizó una lectura inicial en el turbidímetro (HI 88713-ISO, HANNA Instruments). Finalmente, se adicionó BaCl2.2H2O, y se realizó la lectura. Los ensayos se realizaron por triplicado. Los resultados obtenidos se reemplazaron en la siguiente fórmula:
Donde:
NTUf = Turbiedad final
NTUi = Turbiedad inicial
b: Intercepto con el eje de las ordenadas
m: Pendiente con el eje de las ordenadas
FD = Factor de Dilución
La curva estándar se realizó usando disoluciones de SO4 de 3,0 - 40,0 mg SO4 disueltas en agua destilada.
Evaluación de diferentes matrices para la inmovilización de las cepas seleccionadas
La evaluación de diferentes matrices de inmovilización se realizó con las dos cepas que presentaron mayor oxidación de azufre. Las matrices evaluadas en este estudio fueron el bagazo de caña de azúcar y el carbón activado. La inmovilización de las cepas seleccionadas se realizó siguiendo el protocolo descrito por Ma et al. (2006), el cual se describe a continuación. Las cepas seleccionadas se cultivaron en 50 ml de Medio Básico 1 durante 3 días y luego la biomasa microbiana se recolectó por centrifugación a 6000 rpm por 10 min. Posteriormente, la biomasa se colocó en 100 ml de Medio Básico 1 y 40 g de bagazo de caña de azúcar o carbón activado. Transcurridos 15 días de incubación, se evaluó la eficiencia de oxidación de azufre mediante la técnica de cuantificación de sulfatos descrita anteriormente (Ma et al., 2006).
Resultados
Estrategias de aislamiento de microorganismos oxidadores de azufre
Para el aislamiento de los microorganismos oxidadores de azufre presentes en las muestras de aguas de manantiales termales, aguas residuales de minería y aguas de la industria metalmecánica, se evaluaron diferentes medios de cultivo para determinar cuál permitía una mayor recuperación de microorganismos oxidadores de azufre. Después de 2 semanas de incubación se evidenció crecimiento en 17 cepas, donde 9 cepas se aislaron del Medio Básico 1 mientras que 8 cepas se aislaron del Medio Básico 2 (Tabla 4).
Aislamiento y caracterización de microorganismos oxidadores de azufre
Mediante el uso de las estrategias de cultivo empleadas se logró el aislamiento de un total de 17 cepas, 6 cepas de las minas Monguí, 6 cepas de las minas Paz del Rio, 2 cepas del manantial termal de Tabio y 3 cepas de aguas residuales de la industria metalmecánica. La caracterización fenotípica de cada una de las cepas aisladas incluyó la descripción macroscópica de las colonias, la descripción microscópica de la forma de las células, la coloración de Gram, la presencia o ausencia de esporas y la motilidad (Tabla 5) (Anexo).
Evaluación de la capacidad de oxidación de azufre de los microorganismos aislados
A partir de los resultados obtenidos se determinó que todas las cepas aisladas en este estudio tienen la capacidad de oxidación de especies reducidas del azufre (°S), ya que presentaron valores positivos de sulfato, esto indica que las cepas aisladas tienen la habilidad de utilizar especies reducidas del azufre y oxidarlas hasta sulfato. La cuantificación de sulfatos promedio obtenido para las cepas aisladas fue de 12,82 mg SO4/L. Las cepas que presentaron mayor capacidad de oxidación de azufre fueron M14-C2 y M15-C1, las cuales registraron valores de 15,3 mg SO4/L y 14,9 mg SO4/L, respectivamente (Figura 1).
Evaluación de diferentes matrices para la inmovilización de las cepas seleccionadas
La evaluación de diferentes matrices de inmovilización (carbón activado y bagazo de caña de azúcar) se realizó con las dos cepas que presentaron los valores más altos de cuantificación de sulfato: M14-C2 y M15-C1.
En la figura 2 se evidencia la cuantificación de sulfatos de las cepas M14-C2 y M15-C1 en presencia de las matrices de inmovilización evaluadas. De acuerdo con los resultados obtenidos se evidenció que el bagazo de caña de azúcar permitió una mayor oxidación de azufre de las cepas seleccionadas, observándose una cuantificación de sulfato de 23,92 g SO4/L (promedio) para la cepa M14-C2 y 24,15 g SO4/L (promedio) para la cepa M15-C1. En el caso del carbón activado se evidenció que esta matriz afecta la capacidad de oxidación del azufre de las cepas evaluadas, ya que en presencia de esta matriz se registró una cuantificación de sulfatos de 0,16 g SO4/L para la cepa M14-C2 y 6,65 g SO4/L para la cepa M15-C1, mientras que las cepas sin inmovilización registraron una cuantificación de sulfatos de 23,92 g SO4/L para la cepa M14-C2 y 24,15 g SO4/L para la cepa M15-C1.
Discusión
El sulfuro de hidrógeno es el principal contaminante producido por la digestión anaeróbica de materiales orgánicos, ya que causa problemas sensoriales y tóxicos, y es el responsable de la corrosión del hormigón y las estructuras de acero. Por lo tanto, para aumentar el uso biogás como una fuente alternativa de energía, el H2S debe ser eliminado (Cherosky & Li, 2013). Para la eliminación de este contaminante existen varios métodos, incluidos los biológicos, físicos y químicos. Actualmente, existe una preferencia por el uso de métodos de desulfuración biológica, ya que son menos costosos y no producen materiales indeseables que deban eliminarse. La implementación de este método se basa en el conocimiento y la comprensión del ciclo biogeoquímico del azufre en la naturaleza, donde bacterias que oxidan el azufre juegan un papel clave. Estas bacterias utilizan el oxígeno (condiciones aerobias) o el nitrato (condiciones anaerobias) como aceptor final de electrones para oxidar formas reducidas del azufre (H2S o °S) (Friedrich et al., 2001; Pokorna & Zabranska, 2015).
En este estudio se aislaron y seleccionaron bacterias con potencial capacidad de oxidación de azufre para su posible uso en la producción de biogás de alta pureza.
La estrategia empleada en este estudio para el aislamiento de microorganismos oxidadores de azufre se basó en el uso de medios oligotróficos suplementados con azufre elemental (°S), con el fin de asegurar el aislamiento de microorganismos con capacidad de oxidación de formas reducidas del azufre. El azufre está frecuentemente presente en todos los organismos y se produce en compuestos orgánicos tales como aminoácidos, proteínas, enzimas, antibióticos y grasas (Pokorna & Zabranska, 2015). Los estados de oxidación de este elemento incluyen -2 (sulfuro, HS-), 0 (azufre elemental, °S), +4 (S03 -2) y +6 (sulfato, S04 2), por lo tanto, la presencia de °S en el medio de cultivo probablemente estimula el crecimiento de microorganismos que tengan la capacidad de oxidar especies reducidas del azufre. Previos estudios han reportado el uso de °S para el aislamiento de bacterias oxidadoras de azufre como Sul-furihydrogenibium kristjanssonii (Flores et al., 2008), Sulfurirhabdus autotrophica (Watanabe et al., 2016), Thermocrinis minervae (Caldwell et al., 2010), Thiovirga sulfuroxydans (Ito et al., 2005), y Thiobacillus spp. (Yang et al., 2010).
Las comunidades de bacterias oxidadoras de azufre están comúnmente presentes en manantiales minerales sulfurosos, que se caracterizan por tener un alto contenido de sulfuro de hidrógeno y sus formas iónicas (HS- y S2-). Por otra parte, su presencia en aguas superficiales es causada principalmente por la ausencia de oxígeno disuelto y una descomposición biológica anaeróbica asociada de sustancias orgánicas que contienen azufre o por la reducción de tiosulfatos, politionatos, azufre elemental, sulfitos y sulfatos por bacterias reductoras de sulfato (BRS) (Pokorna & Zabranska, 2015). Los resultados obtenidos en este estudio permitieron demostrar que las aguas de manantiales termales, las aguas residuales provenientes de la industria metalmecánica y las aguas residuales provenientes de explotaciones mineras, son fuentes potenciales para el aislamiento de microorganismos oxidadores de azufre. Diferentes estudios también han reportado el aislamiento de bacterias oxidadoras de azufre a partir de manantiales termales, tales como Thermocri-nis minervae (Caldwell et al., 2010), Thermus islandicus (Bjornsdottir et al., 2009), Thiofaba tepidiphila (Mori & Suzuki, 2008), Thiomonas islándica (Vésteinsdóttir et al., 2011) y Thio-bacter subterraneus (Hirayama et al., 2005). Igualmente, se ha reportado el aislamiento de bacterias oxidadoras de azufre provenientes de aguas residuales provenientes de la industria metalmecánica y de explotación minera como es el caso de Thermithiobacillus plumbiphilus (Watanabe et al., 2016) y Alicyclobacillus aeris (Guo et al., 2009), respectivamente.
En este estudio, la evaluación de la capacidad de oxidación de azufre se realizó a través de la cuantificación de sulfatos, donde se demostró que todas las cepas aisladas pueden utilizar especies reducidas de azufre (°S) como donador de electrones y oxidarlo hasta S04. La cuantificación de sulfatos promedio obtenida fue de 12,82 mg S04/L. Rojas-Avelizapa et al. (2013) reportaron el aislamiento de 54 cepas oxidadoras de azufre, la cuales registraron valores de sulfato promedio de 10,5 mg S04/L; estos resultados indican que las cepas aisladas en este estudio tienen probablemente, una mayor capacidad de oxidación de azufre que las reportadas en estudios previos.
En cuanto a la evaluación del bagazo de caña de azúcar y el carbón activado como matriz de inmovilización para aumentar la capacidad de oxidación de azufre de las cepas M14-C2 y M15-C1, se determinó que el bagazo de caña de azúcar es una matriz ideal para mejorar la eficiencia de oxidación de especies reducidas del azufre, ya que se obtuvo un incremento en los valores de sulfato de las cepas inmovilizadas (23,92 g S04/L para la cepa M14-C2 y 24,15 g S04/L para la cepa M15-C1) en comparación con las cepas sin inmovilizar (15,3 g S04/L para la cepa M14-C2 y 14,9 g S04/L para la cepa M15-C1). Este resultado coincide con lo reportado por Chaves et al. (2004) y Pantoja Filho et al. (2010) donde se empleó el bagazo de caña para la biofiltración de H2S.
Conclusiones
Este estudio permitió el aislamiento de bacterias con potencial capacidad de oxidación de azufre a partir de manantiales termales y aguas residuales provenientes de la industria metalmecánica y de explotaciones mineras. Los datos obtenidos en este estudio sugieren que las cepas M14-C2 y M15-C1 inmobilizadas en bagazo de caña de azúcar son candidatas para ser utilizadas en el proceso de desulfuración biológica para la producción de biogás de alta pureza. Sin embargo, futuros estudios son requeridos para optimizar la eficiencia de remoción de H2S de las cepas seleccionadas.
Resumen
Main Text
Introducción
Materiales y métodos
Sitios de muestreo
Estrategias de aislamiento de microorganismos oxidadores de azufre
Caracterización fenotípica de las cepas aisladas
Evaluación de la capacidad de oxidación de azufre de los microorganismos aislados
Evaluación de diferentes matrices para la inmovilización de las cepas seleccionadas
Resultados
Estrategias de aislamiento de microorganismos oxidadores de azufre
Aislamiento y caracterización de microorganismos oxidadores de azufre
Evaluación de la capacidad de oxidación de azufre de los microorganismos aislados
Evaluación de diferentes matrices para la inmovilización de las cepas seleccionadas
Discusión
Conclusiones