
11Publicaciones e Investigación. Bogotá - Colombia, Vol. 17 No. 2, julio - diciembre 2023 - ISSN: 1900-6608 e 25394088

EstratEgias para implEmEntar El EnfoquE 
dEvsEcops En El ciclo dE vida dEl dEsarrollo  

dE softwarE ágil

Strategies for implementing the devsecops 
Approach into the agile software 

development lifecycle

1Diana Patricia Gamba Alarcón

1Universidad Pedagógica y Tecnológica de Colombia

Recibido: 03/15/2023  Aprobado: 30/06/2023 

rEsumEn
El objetivo es generar un procedimiento para la implementación de DevSecOps en las primeras etapas del ci-

clo de vida de desarrollo de proyectos de software que apliquen metodologías ágiles; para crear entregas rápidas y 
seguras para minimizar costos, ahorrar tiempo y generar productos de mayor calidad. La necesidad surge porque, 
en el campo de la ingeniería de software, es evidente que la seguridad no se tiene en cuenta durante todo el ciclo de 
vida del desarrollo sino que suele dejarse para la última etapa, generando retrasos en la entrega de los proyectos al 
usuario final.

Palabras clave: Devsecops, ágil, seguridad de desplazamiento a la izquierda, sdlc, calidad, ic/dc. 

abstract
The aim is to generate a procedure for implementing DevSecOps in the early stages of the development life cycle for 

software projects that apply agile methodologies; to create fast and secure deliveries to minimize costs, save time and 
generate higher-quality products. The need arises because, in the field of software engineering, it is evident that security 
is not taken into account during the entire development life cycle but is usually left for the last stage, generating delays 
in the delivery of projects to the end user. 

Key words: Devsecops, agile, shift left security, sdlc, quality, ic/dc.

11

1 dipagal_45@hotmail.com - https://orcid.org/0000-0002-8864-3689

https://doi.org/10.22490/25394088.6720

Citación: Gamba Alarcón, D. P. . (2023). Estrategias para implementar el enfoque Devsecops en el ciclo de vida de desarrollo de software ágil. 
Publicaciones E Investigación, 17(2). https://doi.org/10.22490/25394088.6720



22 Publicaciones e Investigación. Bogotá - Colombia, Vol. 17 No. 2, julio - diciembre 2023 - ISSN: 1900-6608 e 25394088

Diana Patricia Gamba Alarcón 
Estrategias para implementar el enfoque devsecops en el ciclo de vida del desarrollo de software ágil 

1. dEvsEcops approach into thE agilE 
softwarE dEvElopmEnt lifEcyclE

Currently, in agile software development, the mar-
ket demands continuous integrations and deliveries so 
that companies can be more productive and increase 
their competitiveness. This requires short reaction ti-
mes in the development of new products as well as new 
versions and updates, which has led to implementing 
methodologies involving all the areas and processes 
affected to increase the value of the service. 

DevOps meets these expectations because it allows 
for reducing the maximum time between each deli-
very. It also aims to carry out a different way in which 
the company works together, that is to say, an orga-
nizational methodology that considerably impacts the 
productivity and efficiency of software development. 
By applying it, the development and operations teams 
integrate both tasks. In this way, possible problems 
in operations can be foreseen from development, and 
the operations team benefits from an early stage of the 
knowledge and novelties that arise in the product.

In this model, security is left to the end (after the 
development stage), which means that the planned 
standards are not achieved. In many cases, companies 
have to choose between a high level of security, which 
requires a significant investment of time, or short re-
lease cycles, thus preceding security. This has a high 
impact on the final product, which is why DevOps 
evolves, and DevSecOps has emerged, offering a so-
lution that combines the advantages of a high level of 
security and short product release cycles.

To implement it, security requirements must be in-
tegrated from the programming phase. Consequently, 
excellent communication between the security team, 
the development team, and the operations team is of 
paramount importance. The interdisciplinary scope of 
the process is key to an exemplary implementation in 
the life cycle of a software project.

This approach arose approximately in 2020, and in 
the literature, it is not easy to find a guide that allows 

implementing it in software projects. From here arises 
the need to delve deeper into this area and propose a 
procedure to implement DevSecOps in the develop-
ment life cycle of the agile methodology in software 
projects.

The following concepts are used to understand the 
incursion of the DevSecOps approach:

Agile software development encompasses an ap-
proach to decision-making in software projects.

Software projects: refers to software engineering 
methods based on incremental and iterative develop-
ment, where solutions and requirements evolve quic-
kly in the timeline according to the project needs.

Software development life cycle: These are the sta-
ges defined in software engineering to verify the deve-
lopment of an application to corroborate that it meets 
the designed requirements.

Continuous delivery: For (Mishra & Otaiwi, 2020)
frequency and quality. DevOps is a mixture of diffe-
rent developments and operations to its multitudinous 
ramifications in software development industries, De-
vOps have attracted the interest of many researchers. 
There are considerable literature surveys on this critical 
innovation in software development, yet, little attention 
has been given to DevOps impact on software quali-
ty. This research is aimed at analyzing the implications 
of DevOps features on software quality. DevOps can 
also be referred to a change in organization cultures 
aimed at removal of gaps between the development 
and operations of an organization. The adoption of 
DevOps in an organization provides many benefits in-
cluding quality but also brings challenges to an organi-
zation. This study presents systematic mapping of the 
impact of DevOps on software quality. The results of 
this study provide a better understanding of DevOps 
on software quality for both professionals and resear-
chers working in this area. The study shows research 



33Publicaciones e Investigación. Bogotá - Colombia, Vol. 17 No. 2, julio - diciembre 2023 - ISSN: 1900-6608 e 25394088

Diana Patricia Gamba Alarcón 
Estrategias para implementar el enfoque devsecops en el ciclo de vida del desarrollo de software ágil

was mainly focused in automation, culture, continuous 
delivery, fast feedback of DevOps. There is need of fur-
ther research in many areas of DevOps (for instance: 
measurement, development of metrics of different sta-
ges to assess its performance, culture, practices toward 
ensuring quality assurance, and quality factors such as 
usability, efficiency, software maintainability and porta-
bility implies automating and streamlining the deploy-
ment processes. This allows the organization to develop 
and deliver high-quality products efficiently and reduce 
time considerably.

Continuous integration and development (CI/
CD): This method frequently delivers applications to 
end users by applying automation in development. 
The objective is to incorporate new code, monitoring 
its impact on the entire development lifecycle, from 
the integration stage to distribution and deployment. 
Here plays a vital role in adhering to operations and 
development teams with agile methodology.

Software engineering methods are techniques or 
tasks performed orderly, systematically, and structu-
red to create high-quality and affordable software. It 
includes requirements analysis, design, code construc-
tion, testing, and maintenance.

Software security: Non-functional attribute, ac-
cording to (Portal ISO 25000, n.d.), is the ability to 
protect data and information so unauthorized systems 
or persons cannot read or modify them.

Software product quality: according to (Portal ISO 
25000, n.d.), it can be understood as the level at which 
the product meets the user requirements, providing 
value. It considers requirements such as functionality, 
performance, maintainability, and security.

DevSecOps approach (IBM - Deutschland | IBM, 
n.d.) It is the security integration in each phase of the 
software development lifecycle, from initial design 
to integration through testing, implementation, and 
software delivery. This approach represents a natural 
and necessary evolution in how development organi-
zations approach security. 

Shift Left Security: (Aqua, n.d.) “refers to the 
efforts of a DevOps team to ensure application se-
curity early in the development lifecycle, like a part 
of an organizational pattern known as DevSecOps (a 
collaboration between development, security, and ope-
rations). Shift left means moving a process to the left 
in the traditional linear representation of the software 
development life cycle (SDLC). There are two com-
mon themes of left-shifting initiatives in DevOps: se-
curity and testing.”

DevOps: “Focuses on rapid software development 
and delivery using agile practices to improve colla-
boration between development teams and operations 
teams to reduce inconsistencies between development, 
operations, and releases.” (Akbar et al., 2022)

2. sdlc 

As mentioned in (Ruparelia, 2010) the develo-
pment lifecycle model, called “agile”, focuses on di-
viding the project scope into smaller sub-projects, 
face-to-face communication, and little documentation 
during development. This results in smaller delivera-
bles in shorter time intervals and having several ver-
sions of the software to make small incremental chan-
ges in a productive environment. For this model, it is 
optional to emphasize proper process-oriented steps.

This model is currently applied in the software deve-
lopment life cycle (SDLC), which is very important be-
cause it is an organized way of transforming an idea into 
a functional application. In this cycle, different activi-
ties are implemented, such as team management, end-
user experience, procedure design, and implementation 
of security policies. Planning is directed at fulfilling the 
objectives outlined in the previously defined stages.

There are seven stages defined in SDLC, which will 
be mentioned below, and the purpose of each will be 
briefly explained. First, there is the planning stage and 
the most important one that defines; eighty percent of 
the project’s success. In this stage, the end user’s needs 
are identified, limiting the scope of the problem and 



44 Publicaciones e Investigación. Bogotá - Colombia, Vol. 17 No. 2, julio - diciembre 2023 - ISSN: 1900-6608 e 25394088

Diana Patricia Gamba Alarcón 
Estrategias para implementar el enfoque devsecops en el ciclo de vida del desarrollo de software ágil 

its possible solutions. For this, aspects such as cost, 
execution time, amount of resources, the specialty 
of the resources, and tools to be used, among others, 
must be taken into account. 

The next stage is the analysis; the team will focus 
on defining the functional requirements needed to 
provide the appropriate solution to the problem and 
scope defined in the previous stage. It is also necessary 
to establish who will be responsible for each stage of 
the project and the schedule to be carried out.

Next is the design stage, where the characteristics 
and specifications needed to meet the requirements 
proposed in the analysis stage must be defined. Here 
you must specify the technical specifications, such as 
connections between applications (cloud, database, 
network, others) and information of the core business 
of the company that requires the application, to co-
rrectly interpret what is needed for the specific flow 
and connections that are necessary for proper opera-
tion when implementing the new code.

The fourth stage is development, where the develo-
per begins to design the solution using a flowchart and 
implements it in source code. Additionally, the deve-
loper must perform unit tests to verify that the code is 
running correctly.

The next stage, called “testing and integration”, in-
cludes quality assurance (QA) resources to determine 
whether the design proposed and implemented in the 
previous step achieved the objective presented at the 
beginning. Here, as many errors as possible are found 
so that they can be solved before putting the applica-
tion into a production environment. It should be no-
ted that the ideal is to reduce errors and risks as much 
as possible and, if possible, eliminate them; for this, 
different types of tests are also implemented to valida-
te the connection between components and systems if 
required by the type of application being tested. The 
tests can be repeated as often as necessary to verify 
that the faults are solved. Finally, the end user must 
accept or approve the tests performed on the basis that 
they meet their needs. 

The sixth stage is called implementation. In the 
projects that apply the CI/DI continuous integration 
and continuous development, the delivery is ready 
when the program code is completed (the previously 
defined part). It is deployed to the production envi-
ronment. This means that the development is installed 
and coexists with the other applications; this is done 
by bringing the necessary components to the new en-
vironment. This is usually done when there is less ac-
tivity in the application. In a productive environment, 
the refined project should be reflected in the changes 
implemented up to that moment.

In the last stage, called “maintenance,” the 
application’s performance should be monitored, and if 
the end-user so decides, adjustments should be made 
to the system to improve its behavior. Additionally, re-
move or replace obsolete hardware, implement updates 
to comply with new standards, and apply new security 
policies to counteract new threats.

3. sEcurity in thE sdlc

Security activities must be implemented from the 
beginning of the life cycle and throughout the process 
to mitigate risks and errors in a software development 
project. This is to have quality and reliability in the 
final product. Another critical point to consider is 
continuous monitoring, which allows identifying pro-
blems quickly and applying security measures.

Another critical point to rescue, as mentioned by 
Field [7]: is that security should be crucial for top 
management. All company personnel should then be 
trained to understand the importance of this quali-
ty attribute in software. In this way, global awareness 
is created and not specific as it is currently managed, 
meaning that only a group of people belonging to the 
project is aware of it. The objective of the special tra-
ining is to identify threats, errors, and defects and to 
determine the security measures to be taken to protect 
the software. General and specific training creates a se-
curity culture within the organization with sufficient 
seriousness in its tasks and activities. This is successful 



55Publicaciones e Investigación. Bogotá - Colombia, Vol. 17 No. 2, julio - diciembre 2023 - ISSN: 1900-6608 e 25394088

Diana Patricia Gamba Alarcón 
Estrategias para implementar el enfoque devsecops en el ciclo de vida del desarrollo de software ágil

only if every human resource is aware of the importan-
ce of security and knows how to play his role correctly 
in the fulfillment of secure software development.

Procedure for incorporating the DevSecOps ap-
proach to the agile software development life cycle 

It is proposed to incorporate the following activi-
ties in each stage to add security to the scheme being 
worked on in the DevOps methodology. But first it is 
important to mention the following: currently, vulne-
rability assessment is performed only before the appli-
cation is deployed in the cloud environment. If the 
application is updated or any code is changed by the 
customer, the application’s vulnerability is not reasses-
sed and migrated directly to the cloud again. Therefo-
re, the application could be in a vulnerable state after 
updating and when the vulnerabilities are not checked 
and fixed, there are chances that the application is un-
der threat. In one of the research (Sharon Solomon, 
2015) it was found that data breach causes more than 
$7.2 million and it takes 80 days to detect these issues. 
(Vijayakumar & Arun, 2019)

Shifting left means integrating testing and securi-
ty activities into every relevant stage of development, 
from design to production. The goals of this shift are 
simple: Build security best practices into your process 
from start to finish. Detect potential issues as early in 
the lifecycle as possible. (Apisec, 2022)

4. planning

At this stage, the most important for determining 
the success of the project, the security risks associa-
ted with the requirement must be thoroughly evalua-
ted. First, each threat must be detailed, then each one 
must be classified, on a scale defined in the project (for 
example from 1 to 10, this being the highest impact), 
the vulnerability and the impact that would occur if 
these threats were to materialize during the project. 

One method commonly used for risk analysis in 
projects is the “risk matrix”; an example of how to 

implement it is shown in Table 1. This defines two sca-
les, one, the probability of the risk occurring, which 
can be classified as: frequent, probable, occasional, 
possible, improbable, and the other scale, the impact, 
which can be classified as: negligible, minor, modera-
te, major and catastrophic. Once the scales have been 
defined, each risk listed is classified according to the 
level of impact it may have and the probability of its 
occurrence. These values are represented in a table 
where one scale is placed in the rows and the other in 
the columns; it can be represented by a specific symbol 
such as an x or by colors, as long as it is clear in which 
box each risk is classified. 

It is important to keep in mind that when defining 
each scale, the number of parameters must be equal, 
which means that it should not happen that 4 scales 
are defined for probability and 5 for impact. Always 
respecting the 1:1 scale

5. analysis

Here it is necessary to evaluate, determine and 
design the action plan to be carried out when these 
threats emerge. Thus, it can be seen that the definition 
made in the previous stage is very important since it is 
the key to identify the most critical ones.

First, the 4 types of risks found in the matrix are 
defined: extreme risk, high risk, tolerable risk and ac-
ceptable risk. Then they are placed in the matrix bea-
ring in mind the impact/probability ratio for each type 
of risk defined. 

Table 2 shows a classification of the risks analyzed 
in the matrix that allows understanding the criticality 
of each one.

For acceptable type risks it is important to monitor 
and review them periodically as they do not indicate 
an alarm as long as they continue to behave in the 
same way. For tolerable and high risks, it is necessary 
to keep them in mind and pay attention to them so 
that they do not bring more serious consequences to 



66 Publicaciones e Investigación. Bogotá - Colombia, Vol. 17 No. 2, julio - diciembre 2023 - ISSN: 1900-6608 e 25394088

Diana Patricia Gamba Alarcón 
Estrategias para implementar el enfoque devsecops en el ciclo de vida del desarrollo de software ágil 

the project, and for extreme risks, it is necessary to 
define strong action plans and controls to mitigate the 
probability of occurrence and, if they do occur, to re-
duce the impact.

On the other hand, according to (Diaz Diaz, 2014)
non-functional requirements must be specified, such 
as: user administration and authentication, data confi-
dentiality, cryptography, application availability, data 
integrity, session and session variable management, 
client code execution, data privacy.

6. dEsign

For extreme risks, it is necessary to define the re-
sources involved, the preventive work plans focused 
on these risks, how to document the findings that are 
found, how to record the implementations that are 
being made, define the periodic updates that will be 
made. On the other hand, it is also important to de-
sign or establish the rules for writing code correctly, 
that is to say, that it is easy to understand by several 
resources, not only by the person who wrote it; a de-
veloper with experience in security is necessary so that 
when writing the code the policies are implemented 
and not waiting until the source code is finalized. This 
goes hand in hand with the developers implementing 
software security best practices, which is part of their 
integrity as professionals. 

Finally, at this stage it is essential to properly iden-
tify threats in order to generate correct security requi-
rements focus on relevant threats and report on them 
in the subsequent stages of the SDLC.

7. dEvElopmEnt

Exists diferent ways to add the security in the con-
tinuous Integration and continuous Deployment (CI/
CD), for example in the cloud, Vijayakumar and Arun 
mentioned the common problem in the vulneravili-
ties of the aplications is when the code is change after 
deployed into the cloud environment. They propose a 

system that notifies when the code has a change and 
concluded that implementing Pub/Sub model or AWS 
SQS (Simple Queue Service) Service) would be make 
the systems more scalable (Vijayakumar & Arun, 
2019) . Each of these is listed below

Pub/Sub allows services to communicate asynchro-
nously, with latencies on the order of 100 milliseconds. 
Pub/Sub is used for streaming analytics and data in-
tegration pipelines to ingest and distribute data. It’s 
equally effective as a messaging-oriented middleware 
for service integration or as a queue to parallelize tasks. 
Pub/Sub enables you to create systems of event produ-
cers and consumers, called publishers and subscribers. 
Publishers communicate with subscribers asynchro-
nously by broadcasting events, rather than by syn-
chronous remote procedure calls (RPCs). Publishers 
send events to the Pub/Sub service, without regard to 
how or when these events are to be processed. Pub/
Sub then delivers events to all the services that react to 
them. (Google Cloud, n.d.-b)

Amazon Simple Queue Service (SQS) lets you 
send, store, and receive messages between software 
components at any volume, without losing messages or 
requiring other services to be available (Amazon Web 
Services, n.d.)

Another alternative to implement security in soft-
ware is through containers, these are packages of soft-
ware that contain all of the necessary elements to run 
in any environment. In this way, containers virtualize 
the operating system and run anywhere, from a private 
data center to the public cloud or even on a developer’s 
personal laptop (Google Cloud, n.d.-a)

Some of the most commonly used containers are 
docker and kubernetes; Docker is a containerization 
platform and runtime and Kubernetes is a platform for 
running and managing containers from many contai-
ner runtimes. Kubernetes supports numerous contai-
ner runtimes, including Docker. (Atlassian, n.d.) 

While Docker is a container runtime, Kubernetes 
is a platform for running and managing containers 



77Publicaciones e Investigación. Bogotá - Colombia, Vol. 17 No. 2, julio - diciembre 2023 - ISSN: 1900-6608 e 25394088

Diana Patricia Gamba Alarcón 
Estrategias para implementar el enfoque devsecops en el ciclo de vida del desarrollo de software ágil

from many container runtimes. Kubernetes supports 
numerous container runtimes including Docker, con-
tainerd, CRI-O, and any implementation of the Ku-
bernetes CRI (Container Runtime Interface). A good 
metaphor is Kubernetes as an “operating system” and 
Docker containers are “apps” that you install on the 
“operating system”.(Atlassian, n.d.)

8. tEsting and intEgration

At this stage, the software quality tests must be im-
plemented in the software quality tests, the security 
tests, in addition to those that the quality analyst or 
tester considers necessary to cover all the test scenarios 
in order to validate the good behavior of the applica-
tion according to the initial requirements.

This type of test is implemented in order to detect 
errors and vulnerabilities. Here it should be noted that 
quality assurance tests should not only be implemented 
at this stage, there are also tests called static tests that 
are tests that do not involve the execution of the compo-
nent or system being tested (ISTQB, 2018), that is, they 
are tests in which it is evaluated that the requirements 
and design of improvement plans are correctly created 
without even having the source code as input.

The most important thing when implementing 
dynamic tests (tests that involve the execution of the 
component or system under test (ISTQB, 2018)) and/
or static tests, is to implement them in early stages of 
the sdlc. The feedback from the quality analysts should 
be taken into account from the very beginning when 
starting the definitions in the planning stage.

At this stage, non-functional tests should be imple-
mented in order to evaluate the product’s quality cha-
racteristic: safety. By performing these tests, problems 
such as vulnerabilities, failures in data integration, 
availability, loss and theft of information are detected. 
(Menejías García et al., 2021)

In security testing, the following phases are carried 
out as mentioned (Cynoteck, 2020) first a vulnerability 

scan is performed with automated software, then the se-
curity scan is performed in order to find the weakness of 
the system and find answers to reduce the threat. This 
is followed by penetration testing also called ethical ha-
cking, the purpose is to find security weaknesses that a 
hacker could exploit. With all the information obtained 
up to this point, a risk assessment is performed, i.e. the 
security risks are listed and controls and measures are 
created to reduce the risk. Then a security audit is per-
formed, using tools that allow the detection of security 
imperfections, such as line-by-line code examination. 
After this, the ethical hacking is done, exposing the 
application being tested to different threats to discover 
its weak points and finally the position is evaluated, that 
is to say, a diagnosis of the security of the application is 
given based on all the findings found.

9. implEmEntation

It will be reviewed from the operational perspective 
unifying it with security.

As mentioned (Redhat, 2021) Kubernetes streamli-
nes and unifies workflows across application develo-
pment and operations teams. On the same structure 
that all teams like operations, development and qa 
work, it can be complemented by implementing a na-
tive kubernetes security platform. 

A great advantage of this is that it reduces money 
and time, for example in the learning curve of new 
team members, and also allows early analysis and co-
rrection of errors.

The disadvantage that is evident today in teams 
implementing devops and also security but with diffe-
rent tools is that too many configuration issues arise.

By implementing all devsecops activities in con-
tainers, i.e. creating and shipping the applications in 
these; you get fewer interfaces, tools and models to de-
ploy. This makes the final application easier to unders-
tand from code and allows identifying potential risks 
since its component structure allows it.



88 Publicaciones e Investigación. Bogotá - Colombia, Vol. 17 No. 2, julio - diciembre 2023 - ISSN: 1900-6608 e 25394088

Diana Patricia Gamba Alarcón 
Estrategias para implementar el enfoque devsecops en el ciclo de vida del desarrollo de software ágil 

Another interesting point is the kubernetes mani-
fests that allow devops to define the resources needed 
by a specific application. Policies are applied to these 
resources, reducing complexity and improving securi-
ty at the macro level.

Kubernetes is particularly useful for DevOps teams 
since it offers service discovery, load balancing within 
the cluster, automated rollouts and rollbacks, self-hea-
ling of containers that fail, and configuration mana-
gement. Plus, Kubernetes is a critical tool for building 
robust DevOps CI/CD pipelines.(Atlassian, n.d.)

10. maintEnancE

Here it is important to perform quality tests either 
because there is a change in the application while it 
is deployed in production or because it is desired to 
update a component due to a change in technology.

It is also important to be alert at this stage, since 
over time new threats may arise that were not detected 
in the past because they did not exist. It is important 
to be clear that as technology evolves, so do threats. 
This is done by performing periodic reviews of both 
the technological infrastructure and the business logic 
and improvements proposed by the quality team. This 
process of application security testing must be cons-
tant, and process and product improvement must be 
maintained in order to achieve a high level of stability 
and standardization that allows providing a better ser-
vice. (Diaz Diaz, 2014)

11. conclusions

Early monitoring has, as a consequence, the early 
detection of errors and, therefore, the application of 
corrective actions soon after. 

Developing applications with a high level of secu-
rity will allow them to control critical points, make 

decisions about safety, reinforce security policies, and 
provide accurate information about future estimates.

For a project to have reasonable security policies 
applied, it must first understand its role and take se-
riously the activities involved in putting it into prac-
tice correctly. Additionally, the company plays an es-
sential role since it must be aware that the corporate 
culture encourages and includes good safety practices 
as well as the way of approaching it; it also influences 
the knowledge about safety and the experience it has 
with previous incidents in safety issues.

In order to adequately mitigate the security risks 
that may occur in the project, it is important to define 
and implement effective strategies to properly manage 
the risks during each stage of the software develop-
ment life cycle.

The quality assurance of the product is implicitly 
in each stage of the sdlc, since when managing the 
security risks, with the periodic reviews and preventive 
plans it is being assured that it fulfills the necessary 
measures of quality.

By implementing security policies using the native 
kubernetes application, the risk of implementing secu-
rity in a tool other than the one used by the operations 
and development teams is mitigated.

The most important thing when implementing dy-
namic and/or static tests is to implement them in early 
stages of the sdlc. The feedback from the quality analysts 
should be taken into account from the very beginning 
when starting the definitions in the planning stage. It 
is important to focus on security in requirements and 
design, i.e. in the early stages of the SDLC.

The process of application security testing during 
the maintenance stage must be constant in order to 
improve both the process and the product, so that a 
high level of stability and standardization is achieved 
to provide a better service.|



99Publicaciones e Investigación. Bogotá - Colombia, Vol. 17 No. 2, julio - diciembre 2023 - ISSN: 1900-6608 e 25394088

Diana Patricia Gamba Alarcón 
Estrategias para implementar el enfoque devsecops en el ciclo de vida del desarrollo de software ágil

rEfErEncEs

Akbar, M. A., Smolander, K., Mahmood, S., & Alsanad, A. 
(2022). Toward successful DevSecOps in software development 
organizations: A decision-making framework. Information and 
Software Technology, 147(October 2021), 106894. https://doi.
org/10.1016/j.infsof.2022.106894

Amazon Web Services, I. (n.d.). Amazon SQS. https://aws.amazon.
com/sqs/?nc1=h_ls

Apisec. (2022). Shift Left Security: The Ultimate Guide. https://
www.apisec.ai/blog/shift-left-security#:~:text=Shifting left 
means integrating testing,in the lifecycle as possible

Aqua. (n.d.). What is Shift Left Testing & Security? https://www.
aquasec.com/cloud-native-academy/devsecops/shift-left-de-
vops/

Atlassian. (n.d.). Kubernetes vs. Docker. https://www.atlassian.com/
microservices/microservices-architecture/kubernetes-vs-docker

Cynoteck. (2020). An Introduction to Security Testing. https://cyno-
teck.com/blog-post/introduction-to-security-testing/

Diaz Diaz, S. M. (2014). Pruebas de seguridad en aplicaciones 
web como imperativo en la calidad de desarrollo del software. 8. 
https://www.unab.edu.co/sites/default/files/MemoriasGraba-
das/papers/capitulo7_paper_13.pdf

Google Cloud. (n.d.-a). What are Containers? https://cloud.google.
com/learn/what-are-containers

Google Cloud. (n.d.-b). What is Pub/Sub? https://cloud.google.
com/pubsub/docs/overview

IBM - Deutschland | IBM. (n.d.). What is DevSecOps? https://
www.ibm.com/cloud/learn/devsecops

ISTQB. (2018). Certified Tester Foundation Level Syllabus Interna-
tional Software Testing Qualifications Board. 96. https://www.
istqb.org/downloads/send/51-ctfl2018/208-ctfl-2018-syllabus.
html

Menejías García, R., Hidalgo Reyes, N. H., Marín Díaz, A. & 
Trujillo Casañola, Y. (2021). Procedure for evaluating se-
curity of software products. Revista Cubana de Ciencias 
Informáticas, 15, 333–349. https://www.redalyc.org/jour-
nal/3783/378370462020/html/

Mishra, A., & Otaiwi, Z. (2020). DevOps and software quality: 
A systematic mapping. Computer Science Review, 38, 100308. 
https://doi.org/10.1016/j.cosrev.2020.100308

Portal ISO 25000. (n.d.). ISO 25010. https://iso25000.com/in-
dex.php/normas-iso-25000/iso- 25010

Redhat. (2021). Advantages of Kubernetes-native security. https://
www.redhat.com/en/topics/containers/advantages-of-kuberne-
tes-native-security

Ruparelia, N. B. (2010). Software development lifecycle models. 
ACM SIGSOFT Software Engineering Notes, 35(3), 8–13. 
https://doi.org/10.1145/1764810.1764814

Vijayakumar, K., & Arun, C. (2019). Continuous security as-
sessment of cloud based applications using distributed hashing 
algorithm in SDLC. Cluster Computing, 22(s5), 10789–10800. 
https://doi.org/10.1007/s10586-017-1176-x



1010 Publicaciones e Investigación. Bogotá - Colombia, Vol. 17 No. 2, julio - diciembre 2023 - ISSN: 1900-6608 e 25394088

Diana Patricia Gamba Alarcón 
Estrategias para implementar el enfoque devsecops en el ciclo de vida del desarrollo de software ágil 

appEndix

tablE 1
Risk matrix

Impact/Probability Frequently Probably Occasionally Possible Unlikely

Insignificant risk 3

Lower risk 4 risk 2

Moderated risk 1 risk 6

More risk 7

Catastrophic risk 8 risk 5

tablE 2
Ranking of risks analyzed in the matrix

Impact/probability Frequently Probably Occasionally Possible Unlikely

Insignificant high acceptable acceptable acceptable acceptable 

Lower high tolerable tolerable acceptable acceptable 

Moderated extreme high tolerable tolerable acceptable 

More extreme extreme high tolerable tolerable 

Catastrophic extreme extreme extreme high high 


