
                                                                                       

36 
 

MATHEMATICAL MODEL FOR THE EVOLUTIONARY DYNAMICS OF 

INNOVATION IN CITY PUBLIC TRANSPORT SYSTEMS 

 
Hernán Darío Toro-Zapata 
Associate professor 
PhD Candidate in Automatic Engineering 
Universidad del Quindío – Armenia, Colombia 
ORCID: https://orcid.org/0000-0001-5519-9182 
hdtoro@uniquindio.edu.co 
 
Gerard Olivar-Tost 
PhD. Professor. 
Department of Mathematics and Statistics. Universidad Nacional de Colombia Sede 
Manizales - Colombia 
ORCID: http://orcid.org/0000.0003-1862-4842 
golivart@unal.edu.co  

 

ABSTRACT. 

In this study, a mathematical model is formulated and studied from the 

perspective of adaptive dynamics (evolutionary processes), in order to 

describe the interaction dynamics between two city public transport systems: 

one of which is established and one of which is innovative. Each system is to 

be influenced by a characteristic attribute; in this case, the number of assumed 

passengers per unit it that can transport. The model considers the proportion 

of users in each transport system, as well as the proportion of the budget 

destined for their expansion among new users, to be state variables. Model 

analysis allows for the determination of the conditions under which an 

innovative transportation system can expand and establish itself in a market 

which is initially dominated by an established transport system. Through use 

of the adaptive dynamics framework, the expected long-term behavior of the 

characteristic attribute which defines transport systems is examined. This 

long-term study allows for the establishment of the conditions under which 

certain values of the characteristic attribute configure coexistence, divergence, 
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or both kinds of scenarios. The latter case is reported as the occurrence of 

evolutionary ramifications, conditions that guarantee the viability of an 

innovative transport system. Consequently, this phenomenon is referred to as 

the origin of diversity. 
Keywords. 

Technological Change; Public Transportation Investment; Public 

Transportation; Simulation Modeling 

Introduction 

The city of Bogotá, Colombia is on the cusp of becoming one of the new world 

megacities. While in 1960, only seven megacities existed, by 2010, this 

number had increased to 27, and by 2020, it is projected that this number will 

grow to 37. In this growth process, cities cannot ignore fundamental aspects 

of their own economic and demographic development, or the complex network 

of interactions generated thereby (Kennedy, Stewart, Ibrahim, Facchini, & 

Mele, 2014). One fundamental question is the relationship between population 

growth, demographic development, and public transport infrastructure. 

Bogotá, in particular, is going through a key decision-making moment 

regarding the possibility of incorporating a metro system as one of its leading 

forms of transport. In contrast, the current mass-transit system, Transmilenio, 

operates using articulated buses. There is a latent need to respond to the 

question: under what conditions could a mass-transport system invade, 

expand in the market, and coexist with current, established city transport 

systems, in the long term? This type of question is closely related to others 

studied from the standpoint of evolutionary biology, and which have permitted 

the development of adaptive dynamics as a useful mathematical theoretical 

framework for the study of these questions (Baccini & Brunner, 2012). 
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The formation of new species, called speciation, is one of the central points of 

evolutionary theory. It occurs through the genetic and phenotypic divergence 

of populations of the same species, which adapt to different environmental 

niches, either within the same, or in different habitats. In allopatric speciation, 

two populations are geographically separated by natural or artificial barriers, 

while in parapatric speciation, the two populations evolve toward geographic 

isolation, through the exploitation of different environmental niches in 

contiguous habitats. In either of these two cases, geographical isolation 

constitutes an exogenous cause of speciation, instead of an evolutionary 

sequence (Dercole, & Rinaldi, 2008; Butlin, Galindo & Grahame, 2008). On the 

other hand, sympatric speciation considers a population in a single 

geographical location. As such, it is disruptive selection that exerts selection 

pressures, which favor extreme characteristics over average characteristics. 

This phenomenon may result, for example, from competition for alternative 

environmental niches, in which specializing may be more advantageous than 

being a generalist. Consequently, the population divides into two groups which 

are initially similar, but which later diverge on separate evolutionary paths 

(branches), each driven by their own mutations, undergoing what is called 

evolutionary branching (Butlin et al., 2008; Doebeli, & Dieckmann, 2000). 

Human evolution shows empirical evidence of this evolutionary phenomenon. 

Humans form part of the hominidae family, which includes great apes 

(bonobos, chimpanzees, gorillas, and orangutans) and other extinct humanoid 

species. Since Darwin and the publication of The Descent of Man (1871), 

countless fossils have been found and dated, which show that humans and 

great apes shared a common ancestor approximately six or seven million years 

ago. The causes of the evolutionary branching which led to humans are a 

source of great debate. However, one of the most intriguing potential causes 

is the evolution of articulated language, thanks to fine control of the larynx or 
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the mouth, which is regulated by a particular gene (Dercole, & Rinaldi, 2008; 

Lai, Fisher, Hurst, Vargha-Khadem, & Monaco, 2001). 

Generally speaking, the basic units capable of evolution through innovation 

and competition processes are not limited to living organisms. Multiple 

examples of evolutionary branching can, in fact, be found in material products, 

ideas, and social norms (Dercole, Dieckmann, Obersteiner, & Rinaldi, 2008; 

Dercole, Prieu, & Rinaldi, 2010; Landi, & Dercole, 2016). In particular, 

commercial products are replicated each time that a product is bought, and 

services each time they are used. They go extinct whenever they are 

abandoned by users. Thus, improved versions are occasionally introduced, 

which are characterized by small innovations. These interact in the market 

with the prior, established versions. Said interactions are usually competitive, 

and involve rivalry between products from both the same and different 

categories. 

With the information discussed up to this point, it is possible to respond to the 

question of what constitutes the theory of adaptive dynamics. In general, it is 

a theoretical backdrop which originates in evolutionary biology, and links 

demographic dynamics to evolutionary changes. It further permits the 

description of evolutionary dynamics in the long term, considering innovations 

to be small and rare events (Dercole, & Rinaldi, 2008; Dieckmann & Law, 

1996; Geritz, Metz, Kisdi, & Meszéna, 1997; Geritz, Meszéna, & Metz, 1998). 

This theory focuses on the evolutionary dynamic of quantitative adaptation 

attributes in the long term, and disregards genetic details, through the use of 

asexual demographic models. Among the most relevant aspects is that it 

recognizes interactions as the driving evolutionary force, and considers 

feedback between evolutionary change and the forces of selection experienced 
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by agents (Dercole, & Rinaldi, 2008; Dercole, & Rinaldi, 2010; Doebeli, & 

Dieckmann, 2000). 

Model description 

In this investigation, the question of whether conditions exist for the origin 

of diversity in a competitive market, among the principal public transport 

systems (TS) in a city, is addressed from the perspective of adaptive dynamics. 

Additionally, the average number of passengers transported per unit is 

considered to be a characteristic attribute of each TS. The model proposed 

here allows for determination of the innovative TS fitness function. Invasion 

conditions are established therefrom in a market dominated by a conventional 

TS. Later, based on theory, the canonical equation of adaptive dynamics, 

which reveals the long-term behavior of the characteristic attribute and its 

impact on the TS market, is determined and studied. Finally, a scenario, in 

which evolutionary branching occurs, is simulated. This phenomenon is called 

the origin of diversity, as it implies that the market can be diversified. On the 

other hand, a scenario in which terminal points occur during attribute 

evolution, in the case that diversification is not possible, is also presented. 

Consider a city with an established transport system, which is characterized 

by a particular attribute, 𝑢𝑢1, which is assumed to be positive and associated 

with the average number of passengers who are transported in each mobile 

unit. Denote 𝑥𝑥1 = 𝑥𝑥1(𝑡𝑡), with 0 ≤  𝑥𝑥1 ≤  1 the proportion of people who adopt the 

transport system characterized by attribute 𝑢𝑢1. Suppose that a TS innovation 

occurs, which corresponds to some technological modification which physically 

affects the established TS, characterized by the value of attribute 𝑢𝑢1, and leads 

to the appearance of an innovative TS characterized by the value of attribute 

𝑢𝑢2. In general, it is assumed that the innovation is small, and will have a 

minimal effect, which permits the interaction between transport systems to 
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occur below the same conditions, and on the same market platform. The 

innovative TS gives rise to a small proportion of users 𝑥𝑥2 = 𝑥𝑥2(𝑡𝑡) who compete 

with the established TS. Explicitly, the fourth-dimension system will exist as 

follows:  

𝑥̇𝑥1 = [𝛼𝛼(𝑢𝑢1)𝑦𝑦1 − 𝛿𝛿(𝑢𝑢1)](1− 𝑥𝑥1 − 𝑐𝑐(𝑢𝑢1,𝑢𝑢2)𝑥𝑥2)𝑥𝑥1 

𝑦̇𝑦1 = 𝑙𝑙(𝑢𝑢1)(1 − 𝑦𝑦1) − 𝜖𝜖(𝑢𝑢1)𝛼𝛼(𝑢𝑢1)𝑥𝑥1𝑦𝑦1 

𝑥̇𝑥2 = [𝛼𝛼(𝑢𝑢2)𝑦𝑦2 − 𝛿𝛿(𝑢𝑢2)](1− 𝑥𝑥2 − 𝑐𝑐(𝑢𝑢2, 𝑢𝑢1)𝑥𝑥1)𝑥𝑥2 

𝑦̇𝑦2 = 𝑙𝑙(𝑢𝑢2)(1− 𝑦𝑦2) − 𝜖𝜖(𝑢𝑢2)𝛼𝛼(𝑢𝑢2)𝑥𝑥2𝑦𝑦2. 

In this case, the 𝑦𝑦𝑖𝑖 = 𝑦𝑦𝑖𝑖(𝑡𝑡) state variable, for 𝑖𝑖 = 1 or 2, represents the 

proportion of the budget invested for TS expansion, such that 0 ≤  𝑦𝑦𝑖𝑖 ≤ 1. This 

model goes by the name resident – innovative system. Note that, for the model 

characteristics, must be satisfied that 0 ≤ 𝑥𝑥1 + 𝑥𝑥2 ≤ 1. 

Table 1. Description of study variables and of the coefficients used in the 

model 

State description 

𝑥𝑥𝑖𝑖 Proportion of people who use system 𝑖𝑖 

𝑦𝑦𝑖𝑖 Proportion of the budget available to the expansion of system 𝑖𝑖 

Parameter description 

𝑢𝑢𝑖𝑖 Value of the characteristic attribute which describes TS 𝑖𝑖 

𝛼𝛼(𝑢𝑢𝑖𝑖) Rate of instant TS i adoption  

𝛿𝛿(𝑢𝑢𝑖𝑖) Rate at which TS i is abandoned by users  

𝑙𝑙(𝑢𝑢𝑖𝑖) Rate of investment in new resources for the expansion of TS 𝑖𝑖 

𝜖𝜖(𝑢𝑢𝑖𝑖) TS i efficiency of “converting” the investment into new users  

𝑐𝑐(𝑢𝑢𝑖𝑖,𝑢𝑢𝑘𝑘) Rate of interaction between systems 𝑖𝑖 and 𝑘𝑘. 
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On the other hand, 𝑐𝑐(𝑢𝑢𝑖𝑖,𝑢𝑢𝑘𝑘) is the interaction rate between systems i and k. 

A number of situations are then obtained: 

• If 𝑐𝑐(𝑢𝑢𝑖𝑖, 𝑢𝑢𝑘𝑘) > 1, inter-system competition prevails over intra-system 

competition. A simple example of this is that, if system i corresponds to 

a city taxi system, while system k corresponds to a public bus system, 

then 𝑐𝑐(𝑢𝑢𝑖𝑖, 𝑢𝑢𝑘𝑘) > 1 implies that taxi competition with buses is stronger than 

the competition between the taxis themselves. 

• If 0 ≤ 𝑐𝑐(𝑢𝑢𝑖𝑖,𝑢𝑢𝑘𝑘) ≤ 1, then intra-system competition prevails over inter-

system competition. Returning to the public taxi and bus example, in 

this scenario, competition between the taxis themselves is stronger than 

competition between taxis and buses. Particularly, 𝑐𝑐(𝑢𝑢𝑖𝑖,𝑢𝑢𝑘𝑘) = 0 indicates 

that there is no interaction between the two transport systems, and 

𝑐𝑐(𝑢𝑢𝑖𝑖,𝑢𝑢𝑘𝑘) = 1 indicates that the interaction between the two transport 

systems is symmetrical, or affects both equally. 

• If 𝑐𝑐(𝑢𝑢𝑖𝑖, 𝑢𝑢𝑘𝑘) < 0, the interaction between transport systems does not 

correspond to competition, but rather cooperation, a situation which can 

describe integrated TSs. 

In order to numerically study the previous system, it is considered that the 

proportion in which new resources are invested for transport system expansion 

is 𝑙𝑙(𝑢𝑢𝑖𝑖) = 𝑙𝑙, that the TS efficiency to “convert” the investment into new users is 

given by 𝜖𝜖(𝑢𝑢𝑖𝑖) = 𝜖𝜖, and that the rate at which the TS is abandoned by users 

𝛿𝛿(𝑢𝑢𝑖𝑖) = 𝛿𝛿 are constants for 𝑖𝑖 = 1,2. On the other hand, it has been assumed that 

the rate of instant adoption depends on characteristic attribute 𝑢𝑢, through the 

function: 

𝛼𝛼(𝑢𝑢) =  𝑎𝑎 exp �−
1

2𝑎𝑎12
ln2 �

𝑢𝑢
𝑎𝑎22
��. 
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For a TS characterized by attribute 𝑢𝑢, the 𝛼𝛼(𝑢𝑢) rate makes perfect sense 

when 𝑥𝑥1 is small, and has no competition from other transport systems 

(Dercole et al., 2008). A maximum of 𝑎𝑎 occurs when 𝑢𝑢 =  𝑎𝑎22, in order to 

indicate the value of the attribute which is easiest to absorb. On the other 

hand, for a transport system with a very low or very high number of users, 

𝛼𝛼(𝑢𝑢) tends to cancel out with sensitivity controlled by 𝑎𝑎1. Suppose that 𝑎𝑎 >  0 

and  𝑎𝑎1, 𝑎𝑎2 ∈  ℝ (see Figure 1-left). 

  

Figure 1. Left: Function 𝛼𝛼(𝑢𝑢) chart for parameters 𝑎𝑎 = 1, 𝑎𝑎1  =  0.5, 𝑎𝑎2  =  22.36. Right: Chart 

of function 𝑐𝑐(𝑢𝑢1,𝑢𝑢2), for parameters 𝑓𝑓1  =  0.96 y 𝑓𝑓2  =  2. 

Additionally, the interaction rate between TSs is represented in the following 

form: 

𝑐𝑐(𝑢𝑢1,𝑢𝑢2) = exp �
ln2𝑓𝑓1
2𝑓𝑓22

� exp�−
1

2𝑓𝑓22
 ln2 �

𝑓𝑓1𝑢𝑢1
𝑢𝑢2

�� 

Observe that the interaction rate between TSs 𝑐𝑐(𝑢𝑢1, 𝑢𝑢2) depends on the 𝑢𝑢1/𝑢𝑢2 

reason, and tends toward zero when said radius tends toward zero, or when it 

tends toward infinity, which reflects that TSs which are very different compete 

weakly. A graphic representation of the function is shown in Figure 1-right 

(Dercole et al., 2008). If 𝑓𝑓1 >  1, the TSs that move the greatest average of 

passengers tend to have a competitive advantage. On the other hand, if 0 <
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𝑓𝑓1  < 1, the TSs that move a lower average number of passengers will be those 

which have the advantage. A large 𝑓𝑓2 value implies that very different TSs also 

compete strongly. When 𝑓𝑓1 = 1, competition between TSs is symmetrical.  

At the time in which innovation occurs, the city established TS its assumed 

to be in a nontrivial equilibria 𝑥̅𝑥1(𝑢𝑢1) and 𝑦𝑦�1(𝑢𝑢1). In other words, it is assumed 

that this equilibria is LAS. When the resident – innovative system is studied, 

it may be of interest to determine the conditions under which the innovative 

TS of attribute 𝑢𝑢2 can “invade” the market. For this, stability conditions at the 

equilibria: 𝐸𝐸1 = (𝑥̅𝑥1(𝑢𝑢1),𝑦𝑦�1(𝑢𝑢1), 0,1), must be studied. The zero and one values in 

the last two coordinates of 𝐸𝐸1 indicate that the innovative TS has not yet 

entered the market, and that the entirety of the budget is available for 

investment. In order to determine local stability, a small disruption is created 

around it, and the behavior of the linear system associated is studied (Perko, 

2013). 

The values selected for simulations correspond to the belief that innovation 

involves a TS that is in conditions to transport a higher number of passengers. 

For this reason, it has been assumed that the value of the established TS 

attribute is 𝑢𝑢1 = 200, and that the value of the innovative TS attribute is 𝑢𝑢2 =

800. Although this value is far above the current capacity of the Transmilenio’s 

bi-articulated buses, it is well below the capacity of other mass TSs. For 

example, a three-car train from the Medellin, Colombia metro has the capacity 

to transport up to 1220 passengers at a time.  

A simulation of the transport systems is shown in Figure 2, both before and 

after innovation. The curve shown as a dashed line is the simulation of the 

resident system before the innovation (𝑥𝑥2(𝑡𝑡) = 0 and 𝑦𝑦2(𝑡𝑡) = 1, for all 𝑡𝑡), 

respectively, for the 𝑥𝑥1 proportion of users (left), and for the proportion of 

budget 𝑦𝑦1. Once the innovation occurs, the innovative TS enters the market 
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(dash-dot line), which competes with the established TS (solid line). Observe 

that Figure 2-left corresponds to diversification, or what here has been called 

the origin of diversity. In effect, initially, there was just one TS established in 

the market. After the innovation, however, both TSs can expand and coexist 

in the market as two transport options for users. In particular, it should be 

noted that 𝑓𝑓1  =  0.96 implies that the TS which mobilizes a lower number of 

passengers has the competitive advantage. However, innovative transport is 

able to expand and establish itself in the market. Similarly, in Figure 2-right, 

a substitution scenario is shown. The only variation that has been performed 

with respect to the simulation of Figure 2-left is the 𝑓𝑓2  =  2 value, which 

indicates that, in the market, the TS with the capacity of transporting a higher 

number of passengers is favored. 

       

Figure 2. Diversification (left) 𝑥𝑥1 solutions before innovation (dashed line) and after 

innovation (solid line) and for 𝑥𝑥2 (dash-dot line). Right: 𝑦𝑦1 solutions before innovation 

(dashed line) and after innovation (solid line) and for 𝑦𝑦2 (dash-dot line). The following have 

been used: 𝑎𝑎 = 1, 𝑎𝑎1  =  0.5, 𝑎𝑎2  =  22.36, 𝛿𝛿 = 0.1, 𝜖𝜖 = 0.1, 𝑙𝑙 = 0.025, 𝑓𝑓1  =  0.96, and 𝑓𝑓2  =  2. The 

attributes are 𝑢𝑢1 = 200 and 𝑢𝑢2 = 800, thus, 𝑙𝑙∗(𝑢𝑢1) = 0.0215, 𝑙𝑙∗(𝑢𝑢2) = 0.01184, 𝑅𝑅𝑝𝑝(𝑢𝑢1) = 1.8653, and 

𝑅𝑅𝑝𝑝(𝑢𝑢2) =  6.4287. Substitution (right) the same values have been used for parameters, 

except 𝑓𝑓1  =  2. 
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The dynamic of the attributes, henceforth called the evolutionary dynamic, 

will help to explain the characteristics of the innovation and competition 

process which acts on the market. Dercole et al., 2008, succinctly describes 

the processes which should be considered for rigorous formulation of the 

canonical equation, which describes the evolutionary behavior (in the long 

term) of attribute 𝑢𝑢. This equation takes the general form: 

𝑢̇𝑢 =
1
2 𝜇𝜇𝜎𝜎

2 𝑥̅𝑥(𝑢𝑢)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑢𝑢2

 (𝑢𝑢,𝑢𝑢), 

where 𝜇𝜇 is innovation frequency, and 𝜎𝜎2 is the variance. In other words, the 

canonical equation considers the frequency with which innovations are 

presented in the public TS market, and the size of the variations obtained in 

each innovation. The 𝑥̅𝑥(𝑢𝑢) value corresponds to the equilibria in which the 

established TS stabilizes before the innovation. On the other hand, partial 

derivative 𝜕𝜕𝜕𝜕
𝜕𝜕𝑢𝑢2

 (𝑢𝑢,𝑢𝑢), is called the selection gradient, and is associated with the 

forces of selection which are exerted from the market, by the same TS users, 

on the long-term dynamic of the characteristic attribute; here, 𝜆𝜆(𝑢𝑢1, 𝑢𝑢2) is the 

fitness function given by one of eigenvalues of the system’s  Jacobian matrix 

at the invasion equilibria 𝐸𝐸1 (Dercole et al., 2008). 

When an evolutionary equilibria solution 𝑢𝑢�𝑖𝑖 for 𝑖𝑖 = 1 or 2 is LAS, this means 

that successive innovations which replace those previous, direct attribute 𝑢𝑢 

toward the value of equilibria 𝑢𝑢�𝑖𝑖. It is important to consider that, in the case 

of diversification, or when, after innovation in the market, both TSs can 

coexist, each characteristic attribute will be described by a canonical equation 

like that described previously. The equations which correspond to this situation 

are not reported here, as the explicit expressions are quite long and do not 

significantly contribute to the discussion. However, they may be handled via 

symbolic calculation. 
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In Figure 3, the behavior of characteristic attributes 𝑢𝑢1 and 𝑢𝑢2 are shown, 

before and after innovation. It is evident that both attributes diverge in their 

values to different evolutionary equilibria. While the established TS from 

attribute 𝑢𝑢1 is maintained below 200 passengers per mobile unit, the 

innovative TS progressively increases its capacity until reaching an average of 

over 1400 passengers transported. 

 

Figure 3. The solutions to the canonical equation for 𝑢𝑢1 shown before innovation (dashed 

line), for 𝑢𝑢1 canonical equations (solid line) and for 𝑢𝑢2 (dash-dot line) after innovation. The 

parameters used are the same as those in Figure 9 for the diversification scenario. 

Conclusions 

The resident model proposed here is an initial approach to the phenomenon, 

the resident model permits the study of the dynamics of a city’s TS in various 

scenarios, and learn under which conditions it may be expanded in the market, 

and a partial or total adoption equilibria could be found, although this would 

imply transporting the entire population of the city. 

The innovative-resident model allows for the establishment of the 

conditions under which an innovative TS can invade and expand in the market. 

This information is obtained from study of the sign of the fitness function for 
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specific model coefficient expressions. Additionally, the approach through 

adaptive dynamics permits establishment of the long term dynamics the 

quantitative attribute (average number of passengers per mobile unit). The 

study of this evolutionary dynamic permits the classification of the 

evolutionary equilibrium in ramification points (diversification) or terminal 

points (those in which the evolution definitively halts), like the points where 

substitution takes place. 

Particularly in the case of diversification, with the functions defined in this 

study, and for the values of the parameters considered, it was observed that 

the established TS should maintain a low number of users transported (< 200 

passengers per unit), while the innovative TS should attain a high number of 

users transported (> 1400 passengers per unit). The above indicates that, in 

a scenario of coexistence between the two transport systems, it is necessary 

for each one of them to use a different strategy, in regards to the number of 

passengers that they decide to transport. One of them should focus on mobile 

units with few passengers, while the other system should focus on mobile units 

which can transport passengers massively. 

Diversification is impossible when both transport systems use the same 

strategy. For example, if both TSs design a strategy that permits them to 

transport over 1400 passengers per unit, the effect would be that the 

innovative TS would absorb all users and substitute the established TS. 

Acknowledgements: G. Olivar and H.D. Toro appreciate the financing 

provided by Colciencias, via the research project entitled, “Modelado y 

simulación del Metabolismo Urbano de Bogotá D.C.” Code number 

111974558276. 

 



                                                                                       

49 
 

 

REFERENCES 

• Baccini, P., & Brunner, P. H. (2012). Metabolism of the anthroposphere: 

analysis, evaluation, design. MIT Press. 

• Butlin, R. K., Galindo, J., & Grahame, J. W. (2008). Sympatric, parapatric 

or allopatric: the most important way to classify speciation?. Philosophical 

Transactions of the Royal Society B: Biological Sciences, 363(1506), 2997-

3007. 

• Dercole, F., Dieckmann, U., Obersteiner, M., & Rinaldi, S. (2008). Adaptive 

dynamics and technological change. Technovation, 28(6), 335-348. 

• Dercole, F., Prieu, C., & Rinaldi, S. (2010). Technological change and 

fisheries sustainability: The point of view of Adaptive Dynamics. Ecological 

Modelling, 221(3), 379-387. 

• Dercole, F., & Rinaldi, S. (2008). Analysis of evolutionary processes: the 

adaptive dynamics approach and its applications. Princeton University 

Press. 

• Dercole, F., & Rinaldi, S. (2010). Evolutionary dynamics can be chaotic: A 

first example. International journal of bifurcation and chaos, 20(11), 3473-

3485. 

• Dieckmann, U., & Law, R. (1996). The dynamical theory of coevolution: a 

derivation from stochastic ecological processes. Journal of mathematical 

biology, 34(5-6), 579-612. 

• Doebeli, M., & Dieckmann, U. (2000). Evolutionary branching and sympatric 

speciation caused by different types of ecological interactions. The 

american naturalist, 156(S4), S77-S101. 



                                                                                       

50 
 

• Geritz, S. A., Meszéna, G., & Metz, J. A. (1998). Evolutionarily singular 

strategies and the adaptive growth and branching of the evolutionary 

tree. Evolutionary ecology, 12(1), 35-57. 

• Geritz, S. A., Metz, J. A., Kisdi, É., & Meszéna, G. (1997). Dynamics of 

adaptation and evolutionary branching. Physical Review Letters, 78(10), 

2024. 

• Hale, J. K., & Koçak, H. (2012). Dynamics and bifurcations (Vol. 3). 

Springer Science & Business Media. 

• Kennedy, C., Stewart, I. D., Ibrahim, N., Facchini, A., & Mele, R. (2014). 

Developing a multi-layered indicator set for urban metabolism studies in 

megacities. Ecological Indicators, 47, 7-15. 

• Lai, C. S., Fisher, S. E., Hurst, J. A., Vargha-Khadem, F., & Monaco, A. P. 

(2001). A forkhead-domain gene is mutated in a severe speech and 

language disorder. Nature, 413(6855), 519. 

• Landi, P., & Dercole, F. (2016). The social diversification of fashion. The 

Journal of Mathematical Sociology, 40(3), 185-205 

• Núñez-López, M. (2014). The dynamics of technological change under 

constraints: adopters and resources. 

• Perko, L. (2013). Differential equations and dynamical systems (Vol. 7). 

Springer Science & Business Media. 

 

 

 

 

 

 


