Published
How to Cite
Chlamydia trachomatis: una infección silenciosa
Las infecciones de transmisión sexual producidas por Chlamydia trachomatis representan un problema de salud pública debido a su alta prevalencia y a las consecuencias devastadoras que ocasionan en la reproducción femenina principalmente, dado a que generan enfermedad pélvica inflamatoria, infertilidad por obstrucción tubaria y embarazos ectópicos.
Cabe resaltar que las infecciones por Chlamydia trachomatis son asintomáticas en 70% de las mujeres y tienen secuelas reproductivas porque no se detectan ni tratan oportunamente. Por ello, la persistencia de la infección por C. trachomatis durante meses o años en el área endocervical, las infecciones repetidas o un tratamiento antimicrobiano tardío son factores que favorecen que esta bacteria invada los órganos genitales superiores, como los ovarios o las trompas de Falopio. Chlamydia trachomatis es un patógeno que estimula respuestas inmunes tanto humorales como celulares, así mismo, puede favorecer su propia supervivencia en el huésped infectado al ocasionar ciertos cambios o alteraciones en el sistema inmune e inducir
infecciones persistentes.
Ostos OL, Sánchez RM. Chlamydia trachomatis: avances y perspectivas. NOVA [Internet]. 2003 [CItado 2017 Mar 13]; 1 (1); 81 - 93. Disponible en: http://www.unicolmayor.edu.co/invest_nova/NOVA/artorevi1_1.pdf.
Shubach, A., Galindo, A. and Mora, R. Regulación de la familia de proteínas BCL-2 en células infectadas con Chlamydia trachomatis.(2015) [online] NOVA. Disponible en: http://unicolmayor.edu.co/publicaciones/index.php/nova/article/view/310/576
Malhotra M, Sood S, Mukherjee A, Muralidhar S, Bala M. Genital Chlamydia trachomatis: An update. The Indian Journal of Medical Research . 2013; 138 (3): 303-316. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3818592/#!po=12.5000
Hogan, R., Mathews, S., Mukhopadhyay, S., Summersgill, J. and Timms, P. Chlamydial Persistence: beyond the Biphasic Paradigm. [2004] Infection and Immunity. American Society for Microbiology.Disponible en: http://iai.asm.org/content/72/4/1843.
Bastidas RJ,Elwell CA,Engel JN,Valdivia RH. Chlamydial intracellular survival strategies. Cold Spring Harb Perspect Med.2013 May 1; 3(5). http://perspectivesinmedicine.
cshlp.org/content/3/5/a010256.long.
Redgrove KA, McLaughlin EA. The Role of the Immune Response in Chlamydia trachomatis Infection of the Male Genital Tract: A Double-Edged Sword. Frontiers in Immunology. 2014;5:534. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4209867/#!po=19.8795
Schoborg, R. (2011). Persistencia de Chlamydia: una herramienta para diseccionar las interacciones clamidia-huésped. Microbes and Infection , 13 (7), pp.649-662. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3636554/.
Vardhan H, Dutta R, Vats V, et al. Persistently Elevated Level of IL-8 in Chlamydia trachomatis Infected HeLa 229 Cells is Dependent on Intracellular Available Iron. Mediators of Inflammation. 2009;2009:417658. Disponible en:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2686236/
Wyrick, Priscilla B. “Chlamydia Trachomatis Persistence in Vitro – An Overview.” The Journal of infectious diseases 201.Suppl 2 (2010): S88–S95. PMC. Disponible en https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2878585/#!po=71.8750
Buchholz KR, Stephens RS. Activation of the host cell proinflammatory interleukin-8 response by Chlamydia trachomatis. Cell Microbiol [Internet]. 2006; 8(11):1768-79. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/16803583
Guerra F, Flores S. Factores de riesgo y secuelas reproductivas asociados a la infección por Chlamydia trachomatis en mujeres infértiles. Salud Pública Mex [Internet]. 2003; 45 (5): 672-680. Disponible en: http://www.scielo.org.mx/pdf/spm/v45s5/v45s5a13.pdf
Vasilevsky S, Greub G, Nardelli D, Bauda D. Genital Chlamydia trachomatis: nderstanding the Roles of Innate and Adaptive Immunity in Vaccine Research. Clinical Microbiology Reviews [Internet]. April 2014; 27(2): 346 –370. Disponible en: http://cmr.asm.org/content/27/2/346.full.pdf+html
Paavonen J, Eggert-Kruse W. Chlamydia trachomatis: Impact on human reproduction. Hum Reprod Update [Internet].1999; 5:433-447.. Disponible en: https://www.ncbi.nlm.nih.gov/labs/articles/10582782/
Organización Mundial de la Salud [Internet]. Geneva, Switzerland: Department of Reproductive Health and Research. 2016. Disponible en: http://apps.who.int/iris/bitstream/10665/246165/1/9789241549714-eng.pdf
Cardona JA, Gallego LH, Ríos LA. Infección por Chlamydia trachomatis en pacientes de una institución de salud de Bogotá y Medellín, 2012-2015. Revista Chilena Infectol [Internet]. 2016; 33 (5): 513-518. Disponible en: https://www.dinamicaips.com.co/files/investigaciones/2015_investigacionesdinamica_
gallego_lh_chlamydia.pdf.
Potroz M G, Cho N J. Natural Products for the Treatment of Trachoma and Chlamydia trachomatis. Molecules [Internet]. 2015; 20(3), 4180-4203. Disponible en: http://www.mdpi.com/1420-3049/20/3/4180/htm.
Dean D, Powers VC. Persistent Chlamydia trachomatis Infections Resist Apoptotic Stimuli. Infection and Immunity [Internet]. 2001;69(4):2442-2447. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC98177/
Cheng W, Shivshankar P, Zhong Y, Chen D, Li Z, Zhong G. Intracellular Interleukin-1α Mediates Interleukin-8 Production Induced by Chlamydia trachomatis Infection via a Mechanism Independent of Type I Interleukin-1 Receptor. Infection and Immunity [Internet]. 2008;76(3):942-951. Disponible en:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2258806/
Ziklo N, Huston WM, Hocking JS, and Timms P. Chlamydia trachomatis Genital Tract Infections: When HosT Immune Response and the Microbiome Collide. CellPress [Internet]. 2016; 24 (9): 750–765. Disponible en: http://www.cell.com/trends/microbiology/fulltext/S0966-842X(16)30048-8
Choroszy-Król IC,Frej-MÄ…drzak M,Jama-Kmiecik A,Bober T,Jolanta Sarowska J. Characteristics of the Chlamydia trachomatis species - immunopathology and infections. Adv Clin Exp Med. 2012Nov;21(6):799-808
Jerchel, S., Kaufhold, I., Schuchardt, L., Shima, K., & Rupp, J. (2014). Host immune responses after hypoxic reactivation of IFN-γ induced persistent Chlamydia trachomatis infection. Frontiers in Cellular and Infection Microbiology, 4, 43. http://doi.org/10.3389/fcimb.2014.00043
Health topics Trachoma and Epidemiology. Organización Mundial de la Salud. 2013. Disponible en: http://search.who.int/search?q=chlamydia+-trachomatis+epidemiology&ie=utf8&client=_en_r&proxystylesheet=_en_r&output=xml_no_dtd&oe=utf8&getfields=doctype&site
Persistencia de Chlamydia trachomatis en el endometrio y líquido peritoneal de pacientes con infertilidad pero cultivo cervical negativo. http://www.medigraphic.com/pdfs/ginobsmex/gom-2013/gom131d.pdf24. Resultados reproductivos en mujeres infértiles coninfección por Chlamydia trachomatis. http://www.
medigraphic.com/pdfs/medicadelcentro/mec-2014/mec142c.pdf
Giakoumelou, S., Wheelhouse, N., Brown, J., Wade, J., Simitsidellis, I., Gibson, D., … Horne, A. W. (2017). Chlamydia trachomatis infection of human endometrial stromal cells induces defective decidualisation and chemokine release. Scientific Reports, 7,
http://doi.org/10.1038/s41598-017-02223-z
Johnson, R. M., & Kerr, M. S. (2015). Modeling the transcriptome of genital tract epithelial cells and macrophages in healthy mucosa versus mucosa inflamed by Chlamydia muridarum infection. Pathogens and Disease, 73(9), ftv100. http://doi.org/10.1093/femspd/ftv100
Menon, S., Timms, P., Allan, J. A., Alexander, K., Rombauts, L., Horner, P., … Huston, W. M. (2015). Human and Pathogen Factors Associated with Chlamydia trachomatis-Related Infertility in Women. Clinical Microbiology Reviews, 28(4), 969–985. http://doi.org/10.1128/CMR.00035-15
Shekhar, S., Joyee, A. G., & Yang, X. (2015). Dynamics of NKT-Cell Responses to Chlamydial Infection. Frontiers in Immunology, 6, 233. http://doi.org/10.3389/fimmu.2015.00233
Porcella, S. F., Carlson, J. H., Sturdevant, D. E., Sturdevant, G. L., Kanakabandi, K., Virtaneva, K., Caldwell, H. D. (2015). Transcriptional Profiling of Human Epithelial Cells Infected with Plasmid-Bearing and Plasmid-Deficient Chlamydia trachomatis. Infection and Immunity, 83(2), 534–543. http://doi.org/10.1128/IAI.02764-14
Lim, C., Hammond, C. J., Hingley, S. T., & Balin, B. J. (2014). Chlamydia pneumoniae infection of monocytes in vitro stimulates innate and adaptive immune responses relevant to those in Alzheimer’s disease. Journal of Neuroinflammation, 11, 217.
http://doi.org/10.1186/s12974-014-0217-0
Rey-Ladino, J., Ross, A. G., & Cripps, A. W. (2014). Immunity, immunopathology, and human vaccine development against sexually transmitted Chlamydia trachomatis. Human Vaccines & Immunotherapeutics, 10(9), 2664–2673. http://doi.org/10.4161/
hv.29683
Al-Kuhlani, M., Rothchild, J., Pal, S., de la Maza, L. M., Ouburg, S., Morré, S. A., … Ojcius, D. M. (2014). TRAIL-R1 Is a Negative Regulator of Pro-Inflammatory Responses and Modulates Long-Term Sequelae Resulting from Chlamydia trachomatis Infections in Humans. PLoS ONE, 9(4), e93939. http://doi.org/10.1371/journal.pone.0093939
Rasmussen, S. J., Eckmann, L., Quayle, A. J., Shen, L., Zhang, Y. X., Anderson, D. J., … Kagnoff, M. F. (1997). Secretion of proinflammatory cytokines by epithelial cells in response to Chlamydia infection suggests a central role for epithelial cells in chlamydial pathogenesis. Journal of Clinical Investigation,99(1), 77–87. https://www.ncbi.nlm.nih.
gov/pmc/articles/PMC507770/
Beatty WL, Morrison RP, Byrne GI, Reactivation of Persistent Chlamydia trachomatis Infection in Cell Culture . Infection and immunity [Internet]. 1995; 63 (1), 199–205. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC172978/pdf/630199.pdf
Baud, D., Goy, G., Jaton, K., Osterheld, M.-C., Blumer, S., Borel, N., Vial, Y., Hohlfeld, P., Pospischil, A., and Greub, G. (2011). Role of Chlamydia trachomatis in miscarriage. Emerging Infectious Diseases 17, 1630-1635.
Howie, S.E.M., Horner, P.J., and Horne, A.W. (2011a). Chlamydia trachomatis infection during pregnancy: known unknowns. Discovery Medicine 12, 57-64.
Yasin B, Harwig SS, Lehrer RI, Wagar EA. Susceptibility of Chlamydia trachomatis to protegrins and defensins. Infection and Inmunity [Internet]. 1996 [Citado 2017 Mar 13]; 64(3): 709–713. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC173826/pdf/640709.pdf.
Loomis, W.P., and Starnbach, M.N. (2002). T cell responses to Chlamydia trachomatis. Current Opinion in Microbiology 5, 87-91.
Shaw, J.L. V, Wills, G.S., Lee, K., Horner, P.J., Mcclure, M.O., Abrahams, V.M., Wheelhouse, N., Jabbour, H.N., Critchley, H.O.D., Entrican, G., et al. (2011).
Chlamydia trachomatis Infection Increases Fallo pian Tube PROKR2 via TLR2 and NF B Activation Resulting in a Microenvironment Predisposed to Ectopic Pregnancy. AJPA 178, 253-260.
Wilkowska-Trojniel, M., Zdrodowska-Stefanow, B., Ostaszewska-Puchalska, I., Zbucka, M., Wolczynski, S., Grygoruk, C., Kuczynski, W., and Zdrodowski, M. (2009). Chlamydia trachomatis urogenital infection in women with infertility. Advances in Medical
Sciences 54, 82-85.
Redgrove, K. A., & McLaughlin, E. A. (2014). The Role of the Immune Response in Chlamydia trachomatis Infection of the Male Genital Tract: A Double-Edged Sword. Frontiers in Immunology, 5, 534. http://doi.org/10.3389/fimmu.2014.00534
Bachmann, N. L., Polkinghorne, A. & Timms, P. Chlamydia genomics: providing novel insights into chlamydial biology. Trends Microbiol. 22, 464–472 (2014). http://www.nature.com/nrmicro/journal/v14/n6/abs/nrmicro.2016.30.html?oxtrotcallback=true
Frontela Noda Maydelín, Rodríguez Marín Yoima, Ríos Hernández María de los Ángeles, Hernández Menéndez Maite. Chlamydia trachomatis. Rev Cubana Obstet Ginecol [Internet]. 2014 Mar [citado 2017 Nov 10] ; 40( 1 ): 68-78. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0138-600X2014000100008&lng=es.
Register, K. B., Morgan, P. A., & Wyrick, P. B. (1986). Interaction between Chlamydia spp. and human polymorphonuclear leukocytes in vitro. Infection and Immunity, 52(3), 664–670.https://www.ncbi.nlm.nih.gov/pubmed/3710578
Darville, T., & Hiltke, T. J. (2010). Pathogenesis of Genital Tract Disease due to Chlamydia trachomatis. The Journal of Infectious Diseases, 201(Suppl 2), S114–S125.
Yong, E. C., Klebanoff, S. J., & Kuo, C. C. (1982). Toxic effect of human polymorphonuclear leukocytes on Chlamydia trachomatis. Infection and Immunity,
(2), 422–426. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC347550/
Darville, T., & Hiltke, T. J. (2010). Pathogenesis of Genital Tract Disease due to Chlamydia trachomatis. The Journal of Infectious Diseases, 201(Suppl 2), S114–S125.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3150527/
Rödel, J., Große, C., Yu, H., Wolf, K., Otto, G. P., Liebler-Tenorio, E., … Straube, E. (2012). Persistent Chlamydia trachomatis Infection of HeLa Cells Mediates Apoptosis Resistance through a Chlamydia Protease-Like Activity Factor-Independent Mechanism and Induces High Mobility Group Box 1 Release. Infection and Immunity, 80(1), 195–205. http://doi.org/10.1128/IAI.05619-11
Bastidas, R. J., Elwell, C. A., Engel, J. N., & Valdivia, R. H. (2013). Chlamydial Intracellular Survival Strategies. Cold Spring Harbor Perspectives in Medicine, 3(5), a010256. http://doi.org/10.1101/cshperspect.a010256
Nans, A., Ford, C., & Hayward, R. D. (2015). Host-pathogen reorganisation during host cell entry by Chlamydia trachomatis. Microbes and Infection / Institut Pasteur, 17(11-12), 727–731. http://doi.org/10.1016/j.micinf.2015.08.004
Nans, A., Saibil, H. R., & Hayward, R. D. (2014). Pathogen–host reorganization during Chlamydia invasion revealed by cryo-electron tomography. Cellular Microbiology, 16(10), 1457–1472. http://doi.org/10.1111/cmi.12310
Parrett, C. J., Lenoci, R. V., Nguyen, B., Russell, L., & Jewett, T. J. (2016). Targeted Disruption of Chlamydia trachomatis Invasion by in Trans Expression of Dominant Negative Tarp Effectors. Frontiers in Cellular and Infection Microbiology, 6, 84. http://
doi.org/10.3389/fcimb.2016.00084