Liberación ruminal de cuatro fuentes inorgánicas de magnesio por medio de la técnica in situ en ganado holstein en trópico alto

Wilmer Alfonso Cuervo Vivas, Héctor Jairo Correa Cardona

Resumen


El Magnesio, abundante en praderas pastoreadas por bovinos de leche, actúa como un cofactor en reacciones enzimáticas vitales para las principales vías metabólicas y presenta desaparición ruminal elevada (87%) aunque se desconoce su liberación en fuentes inorgánicas. Con el objetivo de evaluar su solubilización ruminal se incubaron cuatro fuentes inorgánicas (óxido de Mg (MgO), sulfato de Mg (MgSO4), cloruro de Mg (MgCl2) y carbonato de Mg (MgCO3)) determinando su desaparición de la materia seca (DMS) en 3 vacas Holstein (vacías, no lactantes) canuladas al rumen (620 ± 14 kg y 7 años) en el municipio de Santa Elena, Antioquia, Colombia (2538 msnm; bH – MB; 16ºc) consumiendo kikuyo (Cenchrus clandestinus (Hoechst Ex Chiov) Morrone) (Chemisquy et al 2010). Por triplicado se incubaron 0,5 g de cada fuente en bolsas de nailon con dos tamaños de poro (25 y 50μm), en el rumen de las vacas para evaluar DMS en tres tiempos (0, 12 y 24h). Se utilizó un diseño en bloques completos al azar con un arreglo factorial 2x3x4 (2 tamaños de poro, 3 tiempos de incubación y 4 fuentes minerales) y prueba de Tukey para significancia estadística de las diferencias. La incubación ruminal debe realizarse con tamaño de poro no superior a 50um, siendo MgCl2 y MgSO4 mas solubles en rumen, mientras que óxidos y carbonatos presentan solubilidad baja o nula dentro de las primeras 24 horas, lo cual puede dar luces para su utilización como suplemento mineral dentro de la dieta solida o agua de bebida del ganado lechero.

Palabras clave


holstein, líquido ruminal; tamaño de poro; kikuyo; ANKOM; BRIONI

Texto completo:

PDF HTML

Referencias


Adediji, O. & Suttle, N.F. (1999). Influence of diet type, potassium and animal species on the absorption of magnesium by ruminants. Proceedings of the Nutrition Society 58, 31A

Aikawa, J. K. (1981). Magnesium. Its biological significance. CRC Press, Boca Raton, FL.

Askew, E., Benson, J., Thomas, J. & Emery, R. (1971). Metabolism of Fatty Acids by Mammary Glands of Cows Fed Normal, Restricted Roughage, or Magnesium Oxide Supplemented Rations. Journal of Dairy Science, Volume 54, Issue 6, June 1971, Pages 854–862

Atteh, J. O. & Leeson, S. (1983). Influence of increasing dietary calcium and magnesium content of the drinking water on performance and bone and plasma minerals of broiler chickens. Poultry Sci 62:869

Atteh, J. O. & Leeson, S. (1986). Influence of increasing dietary calcium and magnesium levels on performance mineral metabolism and egg mineral content of laying hens. Poultry Sci 64:1261–1268.

Bargo, F., Muller, L. D., Delahoy, J. E. & Cassidy, T. W. (2002) Performance of high producing cows with tree different feeding systems combining pasture or total mixed rations. Journal of Dairy Science. 85(11): 2948-2963.

http://www.journalofdairyscience.org/article/S0022-0302(02)74381-6/pdf

Capen, C. & Rosol, T. (1989). Calcium-regulating hormones and diseases of abnormal mineral metabolism. En KANEKO JJ. Clinical biochemistry of domestic animals 4th ed., Academic Press., San Diego, USA.

Care, A. Brown, R. & Farrar, A. (1984). Magnesium absorption from the digestive tract of sheep. July 1, 1984 Experimental Physiology, 69, 577-587.

Ceballos, A. Noguera, R., Bolívar, D. & Posada, S. (2008). Comparación de las técnicas in situ de los sacos de nylon e in vitro (DaisyII) para estimar la cinética de degradación de alimentos para rumiantes. Livestock Research for Rural Development 20 (7)

Chemisquy, M. A. et al. (2010). Phylogenetic studies favour the unification of Pennisetum, Cenchrus and Odontelytrum (Poaceae): a combined nuclear, plastid and morphological analysis, and nomenclatural combinations. Cenchrus. Ann. Bot. (Oxford) 106:107–130

Church. D. E. (1988). El rumiante, fisiología digestiva y nutrición. Editorial Acribia SA P, Cap. 8; 168-172, Cap. 3; 283

Cole, N. & Todd, R. (2007). Opportunities to enhance performance and efficiency through nutrient synchrony in concentrate-fed ruminants. J Anim Sci April vol. 86 no. 14 suppl E318-E333.

Cole, N. A. (2000). Changes in postprandial plasma and extracellular and ruminal fluid volumes in wethers fed or unfed for 72 hours. J Anim Sci 78, 216-223.

Cook, N., Nordlund, K. & Oetzel G. (2004). Environmental Influences on Claw Horn Lesions Associated with Laminitis and Subacute Ruminal Acidosis in Dairy Cows. Journal of Dairy Science, Volume 87, Supplement, July 2004, Pages E36–E46.

Contreras, P. Wittwer, F. & Ferrando, A. (1992). Control de un brote de tetania hipomagnesemica en una lecheria mediante el empleo de una suplementación mineral magnesemica. Arch. Med. Vet. 24: 93-98.

Correa, H. J. (2007). Cinética de la liberación ruminal de macrominerales en pasto kikuyo (Pennisetum clandestinum) cosechado a dos edades de rebrote. Livestock Research for Rural Development. Volume 18, Article # 31

Correa, H.J, Pabón, M. & Carulla, J.E. (2008). Valor nutricional del pasto kikuyo (Pennisetum clandestinum Hoechst Ex Chiov.) para la producción de leche en Colombia (Una revisión): I - Composición química y digestibilidad ruminal y posruminal Livestock Research for Rural Development 20 (4)

Correa, H., Rojas, H. Ceron, J. Pabon, M. & Carulla, J. (2011). MUN: herramienta para mejorar el contenido de proteína en la leche. VII seminario Competitividad en carne y leche, Cooperativa Colanta.

De Baat, W.C. (1926). Recl. Trav. Chim. Pays-Bas, Vol 45, pp 237

Drackley, J. K., Dann, H. M., Douglas, G. N., Janovick, N. A., Litherland, N. B., Underwood, J. P. & Loor. & J. J. (2005). Physiological and pathological adaptations in dairy cows that may increase susceptibility to periparturient diseases and disorders. Ital. J. Anim. Sci. 4:323-344.

Duque, M. (2013). Efecto de la suplementación con ácidos grasos protegidos ricos en n-3 y n-6 sobre los parámetros productivos, reproductivos y balance energético en vacas holstein. Recuperado de: http://hdl.handle.net/10495/1637

Emanuele, S. M., Staples, C. R. & Wilcox, C. J. (1991). Extent and site of mineral release from six forage species incubated in mobile dacron bags. Journal of Animal Science. 69: 801. http://jas.fass.org/cgi/reprint/69/2/801

Emery, S., Brown, L. & Bell, J. (1965). Correlation of Milk Fat with Dietary and Metabolic Factors in Cows Fed Restricted-Roughage Rations Supplemented with Magnesium Oxide or Sodium Bicarbonate. Journal of Dairy Science, Volume 48, Issue 12, December. Pages 1647–1651.

Erdman, R. (1980). Dietary Buffering Requirements of the Lactating Dairy Cow: A Review. J Dairy Sci 71: 3246—3266.

Erdman, R.A., Hemken, R.W. & Bull, L.S. (1982). Dietary Sodium Bicarbonate and Magnesium Oxide for Early Postpartum Lactating Dairy Cows: Effects on Production, Acid-Base Metabolism, and Digestion. J Dairy Sci 65:712-731

Erdman, R. A., R. L. Botts, R. W. Hemken, & Bull, L. S. (1980). Effect of dietary sodium bicarbonate and magnesium oxide on production and physiology in early lactation. J. Dairy Sci. 63:923– 930.

Faixová, Z. & Faix, F. (2002). Influence of metal ions on ruminal enzyme activities Acta vet. Brno, 71: 451–455

Faixová, Zita, Faix, Maková, Váczi & Prosbová. (2006). Effect of divalent ions on ruminal enzyme activities in sheep. Acta veterinaria (beograd), V56(1), 17-23,

FEDNA. (2012). Fundación española para el desarrollo de la nutrición animal. Recuperado de: http://www1.etsia.upm.es/fedna/tablas.htm#subc

Field, A.C. & Munro, C.S.M. (1977). The effect of site and quantity on the extent of absorption of Mg infused into the gastro-intestinal tract of sheep. Journal of Agricultural Science, Cambridge 89, 365–371.

Fontenot, J., Wise, M. & Webb, K. (1973). Inter-relationships of potassium, nitrogen and magnesium in ruminants. Fed. Proc. 32: 1925 – 1928.

Galbraith, H., Miller, T. B., Paton, A. M. & Thompson, J. K. 1971. Antibacterial Activity of Long Chain Fatty Acids and the Reversal with Calcium, Magnesium, Ergocalciferol and Cholesterol. Journal of Applied Microbiology, 34: 803–813. doi: 10.1111/j.1365-2672.1971.tb01019.x

García, A. & Kalscheur, K. (2006). Tamaño de particular y Fibra efectiva en la dieta de las vacas lecheras College of Agriculture and Biological Sciences. South Dakota State University. USA. p 5. Recuperado de: .

Giraldo, L. Gutierrez, L. & Rua, C. (2007). Comparación de dos técnicas in vitro e in situ para estimar la digestibilidad verdadera en varios forrajes tropicales. Rev Col Cienc Pec 20: 269-279.

Goering, H.K. & VanSoest, P.J. (1970). Forage Fiber Analyses (Apparatus, Reagents, Procedures, and Some Applications). USDA Agricultural Research Service. Agricultural Handbook No. 379

Goff, J. (2006). Macromineral physiology and application to the feeding of the dairy cow for prevention of milk fever and other periparturient mineral disorders. Animal Feed Science and Technology 126, 237–257

Gojon, H., Siqueiros, D. & Contreras, H. (1998). Digestibilidad ruminal y degradabilidad in situ de macrocystis pyrifera y sargassum spp. en ganado bovino. Ciencias Marinas, vol. 24, núm. 4, diciembre, pp. 463-481, Universidad Autónoma de Baja California México

Greene, L. W., Webb, K. E. & Fontenot, J. P. (1983). Effect of Potassium Level on Site of Absorption of Magnesium and Other Macroelements in Sheep1. J. Anim. Sci. 56:1214-1221. doi:10.2527/jas1983.5651214x

Hall, M. & Huntington, G. (2008). Nutrient synchrony: Sound in theory, elusive in practice. J Anim Sci April vol. 86 no. 14 suppl E287-E292.

Hoffsis, G., Saint-Jean, G. & Rings, D. (1989). Hipomagnesemia in ruminants. Cont. Educ. 11: 519-523.

Holden, L. A., Muller, L. D. & Fales, S. L. (1994). Estimation of intake in high producing Holstein cows grazing grass pasture. J. Dairy Sci. 77:2332–2340.

Holdridge, L. (1996). Ecología basada en zonas de vida. San José de Costa Rica: Instituto interamericano de cooperación para la agricultura.

Horn, J. & Smith, R. (1978). Absortion of magnesium by young steer. Br. J. Nutr. 40:473-484. Recuperado de: http://www.cipav.org.co/lrrd/lrrd18/2/corr18031.htm.

Hutjens, M. (1991). Feed Additives: Which, When, and Why. livestocktrail.illinois.edu

Hvelplund, T. & Weisbjerg, M. (2000). In situ Technique for the estimation of protein degradability and postrumen availability, Chapter 12 en Forage Evaluation in Ruminal Nutrition CAB International. Recuperado de: https://books.google.com.co/books?hl=es&lr=&id=78WIrCCJW-MC&oi=fnd&pg=PA233&dq=Hvelplund+%26+Weisbjerg+2000+pore+size&ots=giIoh9EPWo&sig=bS5cODOh3BCpPYIHCSnKG2CM9WY

Jesse, B. W., Thomas, J. W. & Emery, R. S. (1981). Availability of magnesium from magnesium oxide particles of differing sizes and surfaces. J. Dairy Sci. 64:197.

Kohn, R. A., Dinneen, M. M. & Russek-Cohen, E. (2005). Using blood urea nitrogen to predict nitrogen excretion and efficiency of nitrogen utilization in cattle, sheep, goats, horses, pigs, and rats. J. Anim. Sci. 83:879–889

Lidberg, J. (1984). Nitrogen metabolism in sheep. 2. A comparison between rumen degradability of nitrogen an organic matter in sacco and in vivo in sheep fed rations and various protein supplements. Swedish journal of agricultural research. 14:37

Lindberg, J. E., & Knutsson, P. G. (1981). Effect of bag pore size on the loss of particulate matter and on the degradation of cell wall fibre. Agric. Environ. 6: 171.

Littledike, E., Stuedeman, J., Wilkinson, S. & Horst, R. (1983). Grass tetany syndrome. Pages 173–195 in Role of Magenesium in Animal Nutrition. J. Fontenot, G. Bunce, K. Webb, and V. Allen, eds. John Lee Pratt Annual Nutrition program. Blacksburg, VA.

Lough, D., Beede, D. & Wilcox, C. (1990). Lactational Responses to and In Vitro Ruminal Solubility of Magnesium Oxide or Magnesium Chelate. Journal of Dairy Science, Volume 73, Issue 2, February 1990, Pages 413–424

MADR Ministerio de Agricultura y Desarrollo Rural. (2010). Ganadería bovina para la producción de carne en Colombia. Recuperado de: https://www.dane.gov.co/files/investigaciones/agropecuario/sipsa/Bol_Insumos_feb_2016.pdf

Madsen, J. & Hvelplund, T. (1994). Prediction of in situ protein degradability in the rumen: results of a European ringtest. Livestock Production Science 39, 201–212.

MAFF (1992). Feed composition – UK Tables of Feed Composition and Nutritive Value for Ruminants,

Martens, H. & Blume, I. (1986). Effect of intraruminal sodium and potassium concentrations and of the transmural potential difference on magnesium absorption from the temporarily isolated rumen of sheep. Quarterly Journal of Experimental Physiology 71, 409–415.

Masuyama, R., Uehara, M., Suzuki, K. & Goto, S. (1995). The action of magnesium in reducing renal calcification in rats receiving high phosphorus supplemented diet. Nutrition Research, Volume 15, Issue 11, 1673-1682.

McDowell, L.R. (1996). Feeding minerals to cattle on pasture. Animal Feed Science Technology 60, 247-27 1

Minson, D.J. (1990). Magnesium. In: Forage in Ruminant Nutrition. Academic Press, Sydney, pp. 265–290.

Morgan, S. (2011). Solubility Rules En: Analytical Chemistry. University of South Carolina. Recuperado de: http://www.chem.sc.edu/faculty/morgan/resources/solubility/

Moseley, G. & Griffiths, D. (1984). The mineral metabolism of sheep fed high and low magnesium selections of Italian ryegrass. Grass Forages science, 39:105.

National Library of Medicine - Medical Subject Headings 2006

National Research Council (NRC). (2001). The nutrient requirement of dairy cattle. Seventh edition; National Academy Press, Washington D. C. Cap 9, 12, 15, 1.

NIST. (2011). National Institute of standards and technology. Standard reference database.

Nocek, J. E. (1988). In situ and other methods to estimate ruminal protein and energy digestibility: a review. Journal of Dairy Science 71 (8): 2051 – 2069

Nocek, J. E. (1985). Evaluation of specific variables affecting in situ estimates of ruminal dry matter and protein digestion. J. Anim. Sci. 60:1347.

Ørskov, E.R., Hovell, F.D. & Mould, F. (1980). The use of nylon bag technique for the evaluation of feedstuffs. Tropical Animal Productivity 195-213.

Ortega, M. & Carranco, M. 1993. Factores que afectan la digestibilidad in situ de 10s alimentos en el rumen. Vet Mex. 24 (1) 1993.

Panella-Riera, N., Velarde, A., Dalmau A. E., Fàbrega, M., Font i Furnols, M., Gispert, J., Soler, J., Tibau, M.A. & Oliver, M. (2009). Livestock Science, Volume 124, Issues 1–3, 277-287.

Patnaik, P. (2003). Handbook of Inorganic Chemicals. New York: McGraw Hill.

Peña, G., Añez, B. & Mario, D. (2007). Respuesta de la cebolla (Allium cepa L.) a la aplicación de azufre, magnesio, cinc y boro en suelos alcalinos. Revista Forestal Venezolana - Número 043 - Vol 002.

Quin, J.I., Watli van cler,J.G. & Mybiirgli, S.(1938). Stiidies on the alimentary tract of Merino sheep in South Africa. 4. Description of expei imental tecniqrie. OnderstepoortJ. vet. Sn. Anim. Znd., 11: 341-360

Rauch, R., Robinson, P. & Erasmus, L. (2012). Effects of sodium bicarbonate and calcium magnesium carbonate supplementation on performance of high producing dairy cows. Animal Feed Science and Technology 177, 180– 193

Reference Tables for Physical Setting/Chemistry. (2011). Edition. Kentucky University. Recuperado de: http://www.kentchemistry.com/newRT.pdf

Reis, R. B. & Combs, D. K. (2000). Effects of increasing levels of grain supplementation on rumen environment and lactation Journal of Dairy Science Vol. 84, No. 2, 2001 performance of dairy cows grazing grass-legume pasture. J. Dairy Sci. 83:2889–2899.

Relling A. & Mattioli G. (2003). Fisiología digestiva y metabólica de los rumiantes. Actualizacion. Ohio State University, Facultad de ciencias veterinarias, universidad mar del plata.

Rotger, A., Ferret, A., Calsamiglia S. & Manteca, X. (2006). Effects of nonstructural carbohydrates and protein sources on intake, apparent total tract digestibility, and ruminal metabolism in vivo and in vitro with high-concentrate beef cattle diets. J Anim Sci, 84:1188-1196.

Royal Society of chemistry - Chemspider. (2006). Recuperado de: http://www.chemspider.com/Chemical-Structure.22987.html

Russell, J.B. & Dombrowski, D.B. (1980). Effect of pH on the efficiency of growth by pure cultures of rumen bacteria in continuous culture. Appl Envir Microbiol 39, 604-610.

Scandolo D, Noro D. Bohmwald H., Contreras P. & Wittwer. (2007). Variación diurna del pH y de las concentraciones de magnesio y potasio del fluido ruminal en vacas lecheras a pastoreo. Arch. Med. Vet. 39, Nº 2.

Schaefer, D., Wheeler, L. Noller C., Keyser, R. & White, J. (1982). Neutralization of Acid in the Rumen by Magnesium Oxide and Magnesium Carbonate. Journal of Dairy Science Vol. 65, No. 5.

Schonewille, J. Everts, H., Jittakhot, S. & Beynen, A. (2007); Quantitative Prediction of Magnesium Absorption in Dairy Cows. J. Dairy Sci. 91:271–278

Schonewille, J., Van’t Klooster, A., Wouterse, H. & Beynen, A. (1998). Effects of Intrinsic Potassium in Artificially Dried Grass and Supplemental Potassium Bicarbonate on Apparent Magnesium Absorption in Dry Cows. J Dairy Sci 82:1824–1830

Schonewille, J. (2013). Magnesium in dairy cow nutrition: an overview. Plant and Soil July 2013, Volume 368, Issue 1-2, 167-178

Tomas, E. & Potter, B. (1976). The site of magnesium absorption from ruminal stomach. 1976. Br. J. Nutr. 36: 37-45.

Uden, P. & Van Soest, P. (1984). Investigation of the In situ bag technique and a comparison of the fermentation in heifers sheep, ponies and rabbits. Journal of Animal Science 58: 213

Underwood, E. & Suttle, N. (1999). The mineral nutrition of livestock 3rd edition. CABI International.

Van Eys, J. E. and R L. Reid. (1987). Ruminal solubility of nitrogen and minerals from fescue and fescuered clover habage. J. Anim. Sci. 62, 1101.

Van Helllen R. & Ellis W. (1977). Sample container porosities for rumen in situ studies. Journal of Animal Science 44:141.

Vanhatalo, A. (1995). Assessment of intestinal feed nitrogen digestibility in ruminants by the mobile-bag method. Dissertation, Agricultural Research Centre of Finland, Institute of Animal Production, 124 pp.

Wittwer, F., Contreras, P., Klein, R. & Bohmwald, T. (1995). Efecto de la administración oral de óxido de magnesio y sulfato de magnesio en vacas con hipomagnesemia inducida. Arch. Med. Vet. XXVII, Nº1.

Xin, Z., Tucker, W. & Hemken, R. (1989). Effect of Reactivity Rate and Particle Size of Magnesium Oxide on Magnesium Availability, Acid-Base Balance, Mineral Metabolism, and Milking Performance of Dairy Cows. J Dairy Sci 72, 462-470




DOI: http://dx.doi.org/10.22490/21456453.1829

Enlaces refback

  • No hay ningún enlace refback.


Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.

Licencia de Creative Commons
Revista de Investigación Agraria y Ambiental is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.