Efecto de la radiación ultravioleta y la colonización micorrízica en árboles pioneros de la región oriental de América del Norte

Nilsen Lasso-Rivas

Resumen


Las plantas están expuestas a múltiples factores de estrés que causan alteraciones en su fisiología. Sin embargo, la evidencia sugiere que las
relaciones mutualistas con microorganismos pueden ayudar a las plantas a superar los efectos perjudiciales de algunos factores de estrés abiótico.
El objetivo de esta investigación fue analizar los efectos individuales e interactivos de los rayos ultravioleta (UV) (280-400 nm) y la simbiosis micorrizíca arbuscular (MA) en el crecimiento vegetativo en plántulas de tres especies de árboles pioneros. Se cultivaron en invernadero plántulas de Populus
deltoides, Betula nigra y Salix nigra usando un diseño factorial 2 × 2, con dos condiciones de radiación UV (con y sin radiación UV) y dos tratamientos
MA (inóculo MA vivo o inóculo MA previamente autoclavado). Después de tres meses, las plantas se cosecharon y se registraron crecimiento, morfología y asignación de biomasa; se evaluó porcentaje de colonización MA mediante técnica de cuadricula. Se encontró que las plántulas expuestas
a la radiación UV tenían menor peso seco de la raíz, diámetro del tallo, y relación raíz parte aérea (R/A), y mayor área foliar específica (AFE)
y razón de área foliar (RAF) que aquellas plantas cultivadas en ausencia de radiación UV. La colonización MA no evidenció aumento en el crecimiento
de las plantas. La radiación ultravioleta redujo el porcentaje de raíz colonizada por hongos MA en plántulas de P. deltoides y S. nigra. Se evidenció
que niveles ambientales de radiación UV pueden ejercer un efecto indirecto sobre la micorrización MA en plántulas de árboles pioneros.


Palabras clave


micorrizas arbusculares, estrés abiótico, Populus deltoides, Betula nigra, Salix nigra, crecimiento vegetativo

Texto completo:

PDF

Referencias


Aerts, R. (2002). The role of various types of mycorrhizal fungi in nutrient cycling and plant competition. In: Heijden MGA, Sanders IR (eds) Mycorrhizal Ecol. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 117–134

Alexieva, V., Sergiev, I., Mapelli, S. & Karanov, E. (2001). The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant, Cell Environ 24:1337–1344.

Amudha, P., Jayakumar, M. & Kulandaivelu, G. (2005). Impacts of Ambient Solar UV (280-400 nm) Radiation on Three Tropical Legumes. J Plant Biol 48:284–291.

Atkinson, N.J. & Urwin, P.E. (2012). The interaction of plant biotic and abiotic stresses: from genes to the field.J Exp Bot 63:3523–43.

Bakr, E.M. (2005). A new software for measuring leaf area, and area damaged by Tetranychus urticae Koch. J Appl Entomol 129:173–175.

Ballaré, C.L., Caldwell, M.M., Flint, S.D. et al. (2011). Effects of solar ultraviolet radiation on terrestrial ecosystems. Patterns, mechanisms, and interactions with climate change. Photochem Photobiol Sci 10:226–41.

Bassman, J.H., Robberecht, R. & Edwards, G. (2001). Effects of Enhanced UV B Radiation on Growth and Gas Exchange in Populus deltoides Bartr . ex Marsh Author (s): John H . Bassman , Ronald Robberecht , Gerald E . Edwards Published by : The University of Chicago Press Stable. 162:103–110. Recuperado de: http://www.jstor.org/

Bradshaw, H.D., Ceulemans, R., Davis, J. & Stettler, R. (2000). Emerging Model Systems in Plant Biology: Poplar (Populus) as A Model Forest Tree. J Plant Growth Regul 19:306–313.

Brundrett, M., Bougher, N., Dell, B. et al. (1996). Working with Mycorrhizas in Forestry and Agriculture. ACIAR Monograph 32, Canberra

Burns, R.M. & Honkala, B.H. (1990). Silvics of North America: Volume 2. Hardwoods. United States Department of Agriculture, Forest Service

Coyle, B.F., Sharik, T.L. & Ferrer, P. (1982). Variation in leaf morphology among disjunct and continuous populations of river birch (Betula nigra L.). Silvae Genet 31:122–125.

Dukhovskis, P., Juknys, R., Brazaityte, A. & Zukauskaite, I. (2003). Plant Response to Integrated Impact of Natural and Anthropogenic Stress Factors. Russ J Plant Physiol 50:147–154.

Fitter, A.H. (2006). What is the link between carbon and phosphorus fluxes in arbuscular mycorrhizas? A null hypothesis for symbiotic function. New Phytol 172:3–6.

Frederick, J.E. (1993). Ultraviolet sunlight reaching the earth’s surface: a review of recent research. Photochem Photobiol 57:175–178.

Grover, M., Ali, S.Z., Sandhya, V. et al. (2010) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240.

Gurevitch, J., Morrow, L.L., Wallace, A. et al. (1992) A Meta-Analysis of Competition in Field Experiments. Am Nat 140:539–572.

Hanlon, M.T. & Coenen, C. (2011). Genetic evidence for auxin involvement in arbuscular mycorrhiza initiation. New Phytol 189:701–9.

Hause, B., Mrosk, C., Isayenkov, S. & Strack, D. (2007). Jasmonates in arbuscular mycorrhizal interactions. Phytochemistry 68:101–10.

Herrera-Medina, M.J., Steinkellner, S., Vierheilig, H. et al. (2007) Abscisic acid determines arbuscule development and functionality in the tomato arbuscular mycorrhiza. New Phytol 175:554–64.

Hideg, É., Sass, L., Barbato, R. & Vass, I. (1993). Inactivation of photosynthetic oxygen evolution by UV-B irradiation: A thermoluminescence study. Photosynth

Res 38:455–462.

Huang, S., Dai, Q., Peng, S. et al. (1997). Influence of supplemental ultraviolet-B on indoleacetic acid and calmodulin in the leaves of rice (Oryza sativa L.). Plant

Growth Regul 21:59–64.

Jansen, M.K. (2002). Ultraviolet-B radiation effects on plants: induction of morphogenic responses. Physiol Plant 116:423–429.

Jeffries, P., Gianinazzi, S., Perotto, S. et al. (2003). The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol

Fertil Soils 37:1–16.

Johnson, N.C., Graham, J.H. & Smith, F.A. (1997). Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol 135:575–

Jurgensen, M.F., Richter, D.L., Davis, M.M. et al. (1996).

Mycorrhizal relationships in bottomland hardwood forests of the southern United States. Wetl Ecol Manag 4:223–233.

Klironomos, J.N. & Allen, M.F. (1995). UV-B-mediated changes on below-ground communities associated with the roots of Acer saccharum. Funct Ecol 9:923–930.

Kotilainen, T., Tegelberg, R., Julkunen-Tiitto, R. et al. (2008). Metabolite specific effects of solar UV-A and UV-B on alder and birch leaf phenolics. Glob Chang

Biol 14:1294–1304.

Lichtenthaler, H.K. (1996). Vegetation Stress: an Introduction to the Stress Concept in Plants. J Plant Physiol 148:4–14.

Manly, B.F.J. (2007). Randomization, Bootstrap and Monte Carlo Methods in Biology, 3rd ed. London

Morales, L.O., Tegelberg, R., Brosché, M. et al. (2010). Effects of solar UV-A and UV-B radiation on gene expression and phenolic accumulation in Betula pendula

leaves. Tree Physiol 30:923–34.

Munkvold, L., Kjøller, R., Vestberg, M. et al. (2004). High functional diversity within species of arbuscular mycorrhizal fungi. New Phytol 164:357–364.

Paul, N.D. & Gwynn-Jones, D. (2003). Ecological roles of solar UV radiation : towards an integrated approach. Trends Ecol Evol 18:48–55.

Phoenix, G.K., Gwynn-Jones, D., Lee, J.A. & Callaghan, T.V. (2003). Ecological importance of ambient solar ultraviolet radiation to a sub-arctic heath community.

Plant Ecol 165:163–174.

Pineda, A., Zheng, S.-J., van Loon, J.J.A. et al. (2010). Helping plants to deal with insects: the role of beneficial soil-borne microbes. Trends Plant Sci 15:507–514.

Pozo, M.J., Jung, S.C. & Lòpez-Ràez, J. A-AC. (2007). Impact of arbuscular mycorrhizal symbiosis on plant response to biotic stress: the role of plant defence mechanisms. In: Koltai H KY (ed) Arbuscular mycorrhizas Physiol. Funct. Springer Berlin Heidelberg, pp 193–207

Pühler, A., Strack, D., Hause, B. et al. (2007). Jasmonates in arbuscular mycorrhizal interactions. Phytochemistry 68:101–110.

Ren, J., Yao, Y., Yang, Y. et al. (2006). Growth and physiological responses to supplemental UV-B radiation of two contrasting poplar species. Tree Physiol 26:665–72.

Robertson, G.P., Coleman, D.C., Bledsoe, C.S. & Sollins, P. (1999). Standard soil methods for long-term ecological research. Oxford University Press

Robson, T.M. & Aphalo, P.J. (2012). Species-specific effect of UV-B radiation on the temporal pattern of leaf growth. Physiol Plant 144:146–60.

Rosenberg, M.S., Adams, D.C. & Gurevitch, J. (1999). MetaWin 2.0 (User’s Manual): Statistical Software for Meta-Analysis. 128.

Ruiz-Lozano, J.M. (2003). Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza 13:309–17.

Ryel, R.J., Flint, S.D. & Barnes, P.W. (2010). Solar UV-B Radiation and Global Dimming : Effects on Plant Growth and UV-Shielding. In: Wei Gao, Slusser JR, Schmoldt DL (eds) UV Radiat. Glob. Clim. Chang. Springer Berlin Heidelberg, pp 370–394

Schroeder, M.S. & Janos, D.P. (2004). Phosphorus and intraspecific density alter plant responses to arbuscular mycorrhizas. Plant Soil 264:335–348.

Schumaker, M.A., Bassman, J.H., Robberecht, R. & Radamaker, G.K. (1997). Growth, leaf anatomy, and physiology of Populus clones in response to solar ultraviolet- B radiation. Tree Physiol 17:617–26.

Singh, S.S., Kumar, P. & Ashwani, K.R. (2006). Ultraviolet radiation stress: molecular and physiological adaptations in trees. Abiotic Stress Toler. plants. Springer Netherlands, pp 91–110

Siqueira, O., Aurelio, M., Rosado, S. & Davide, C. (1998). Mycorrhizal colonization and mycotrophic growth of native woody species as related to successional groups in Southeastern Brazil. 241–252.

Smith., F.A., Grace, E.J. & Smith, S.E. (2009). More than a carbon economy: nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses. New Phytol 182:347–58.

Smith, J. (2000). Shoot Dry Weight, Chlorophyll and UV-B-absorbing Compounds as Indicators of a Plant’s Sensitivity to UV-B Radiation. Ann Bot 86:1057–1063.

Smith, S.E., Dickson, S. & Smith, F.A. (2001). Nutrient transfer in arbuscular mycorrhizas: how are fungal and plant processes integrated? Funct Plant Biol 28:685–696.

Smith, S.E., Jakobsen, I., Grønlund, M. & Smith, F.A. (2011). Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156:1050–7.

van de Staaij, Rozema, J. van Beem, A. & Aerts, R. (2001). Increased solar UV-B radiation may reduce infection by arbuscular mycorrhizal fungi (AMF) in dune grassland plants: evidence from five years of field exposure. Plant Ecol 154:169–177.

Sullivan, J.H. (2005). Possible impacts of changes in UV-B radiation on North American trees and forests. Environ Pollut 137:380–389.

Tegelberg, R., Julkunen-Tiitto, R. & Aphalo, P.J. (2001). The effects of long-term elevated UV-B on the growth and phenolics of field-grown silver birch (Betula pendula). Glob Chang Biol 7:839–848.

Turk, M.A., Assaf, T.A. & Hameed, K.M. (2006). Significance of mycorrhizae. World J Agric Sci 2:16–20.

Wargent, J.J., Moore, J.P., Roland Ennos, A. & Paul, N.D. (2009). Ultraviolet radiation as a limiting factor in leaf expansion and development. Photochem Photobiol 85:279–86.

Warren, J.M., Bassman, J.H., Fellman, J.K. et al. (2003). Ultraviolet-B radiation alters phenolic salicylate and flavonoid composition of Populus trichocarpa leaves. Tree Physiol 23:527–35.

Weih, M., Johanson, U. & Gwynn-Jones, D. (1998).Growth and nitrogen utilization in seedlings of mountain birch (Betula pubescens ssp. tortuosa) as affected by ultraviolet radiation (UV-A and UV-B) under laboratory and outdoor conditions. Trees 12:201–207.

Xu, X., Zhao, H., Zhang, X. et al. (2010). Different growth sensitivity to enhanced UV-B radiation between male and female Populus cathayana. Tree Physiol 30:1489– 98.

Yang, Y.Q. & Yao, Y. (2008). Photosynthetic responses to solar UV-A and UV-B radiation in low-and high-altitude populations of Hippophae rhamnoides. Photosynthetica 46:307–311.

Zaller, J.G., Caldwell, M.M., Flint, D.S. et al. (2002). Solar UV-B radiation affects below-ground parameters in a fen ecosystem in Tierra del Fuego, Argentina: implications of stratospheric ozone depletion. Glob Chang Biol 8:867–871.

Zangaro, W., Nishidate, F.R., Camargo, F.R.S. et al. (2005). Relationships among arbuscular mycorrhizas, root morphology and seedling growth of tropical native woody species in southern Brazil. J Trop Ecol 21:529–540.




DOI: https://doi.org/10.22490/21456453.1263

Métricas de artículo

Vistas de resumen.
a description of the source 239




Cargando métricas ...

Enlaces refback

  • No hay ningún enlace refback.




ISSN: 2145-6097 - e-ISSN: 2145-6453 - DOI: https://doi.org/10.22490/issn.2145-6453

Licencia de Creative Commons
Revista de Investigación Agraria y Ambiental is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.