Review: Algoritmos de planificación para la transmisión de datos en tiempo real con IEEE 802.15.4

Sixto Enrique Campaña Bastidas, Jorge Mario Londoño Peláez

Resumen


Las redes de sensores inalámbricas (WSN) se están extendiendo a muchos campos de aplicación, tales como ciudades inteligentes, ambientes inteligentes, internet de las cosas, entre otras tecnologías. Para muchas
de estas tendencias es esencial establecer métodos para la entrega de paquetes, sobre todo aquellos que presenten garantías de tiempo real. En este trabajo se presenta un estudio de los avances recientes publicados
en la literatura científica, considerando principalmente las técnicas de acceso al medio y la planificación de transmisión de datos con garantías de tiempo real en WSN basadas en el estándar IEEE 802.15.4. Este estudio
presenta las características más importantes, así como las principales diferencias entre las distintas técnicas. Al final se presentan algunas conclusiones y se proponen futuras líneas de investigación que buscan con interés la aplicación de WSN en ambientes con restricciones de tiempo real.

Palabras clave


beacon order (BO); beacon intervalo (BI); capa MAC; GTS; IEEE 802.15.4; redes de sensores inalámbricas; superframe duration (SD); superframe order (SO).

Texto completo:

PDF HTML

Referencias


S.E. Campaña, y J.M. Londoño, “Estudio de redes de sensores y aplicaciones orientadas a la recolección y análisis de señales biomédicas”. Gerencia Tecnológica Informática, 12(33), 85-99, 2003.

M. Kohvakka, M. Kuorilehto, M. Hännikäinen, and T.D. Hämäläinen, Performance Analysis of IEEE 802.15.4 and ZigBee for Large-Scale Wireless Sensor Network Applications. PE-WASUN’06, Torremolinos, Malaga, Spain, 2006.

S.E. Campaña & J.M. Londoño, A Characterization of data transfer modes in Wireless Sensor Networks based on IEEE 802.15.4 in Real-time. IEEE LATINCOM 2014. Latin American Workshop, (2014).

S.A Desai, P.H. Zope, & S.R. Suralkar, “A Review on IEEE 802.15.4 – Standard for Wireless Body Network, IJIRSET” Vol. 2, Issue 5, 2013.

A. Koubâa, M. Alves, & E. Tovar, E. “GTS allocation analysis in IEEE 802.15. 4 for real-time wireless sensor networks”. In Parallel and distributed processing symposium, 2006. IPDPS 2006. 20th international (pp. 8-pp). IEEE.

M. O. Amarillo, “Simulación de redes de sensores inalámbricos: un modelo energético a nivel de nodosensor bajo las especificaciones IEEE 802.15. 4tm yigBee”, 20012.

N.S. Bhat, Design and implementation of IEEE 802.15. 4 Mac protocol on FPGA. arXiv preprint ar- Xiv:1203.2167, 2012.

Z. Hanzálek & P. Jur ík, P. “Energy efficient scheduling for cluster-tree Wireless Sensor Networks with time-ounded data flows: application to IEEE 802.15. 4/ZigBee”. Industrial Informatics, IEEE Transactions on, 6(3), 2010, pp. 438-450.

C. Ma, C. (2014). “Performance modelling and analysis of multiple coexisting IEEE 802.15. 4 wireless sensor networks” (Doctoral dissertation).

Martínez Castro, D. Metodología de diseño para minimizar el consumo de potencia y los retrasos en redes inalámbricas de sensores y actuadores con retrasos acotados Doctoral dissertation, 2011.

B.H. Lee, E. Yundra, H.K. Wu, & M.U.H., Al Rasyid, “Analysis of superframe duration adjustment scheme for IEEE 802.15.4 networks”. EURASIP Journal on Wireless Communications and Networking, 2015, pp. 1-17.

A. Ramesh, & P. Sumithabhashini, “Analyzing the Performance of GTS Allocation Using Markov Model in IEEE”, 802.15. 4.

P. Park, et al, “Performance analysis of GTS allocation in beacon enabled IEEE 802.15”. 4. In Sensor, Mesh and Ad Hoc Communications and Networks, 2009. SECON’09. 6th Annual IEEE Communications Society Conference, 2009, pp. 1-9.

P.R. Grassi, et al, “Knowledge-based design space exploration of wireless sensor networks”. In Proceedings of the eighth IEEE/ACM/IFIP international conference on Hardware/software codesign and system synthesis, 2012, pp. 225-234.

N. Nordin, and F. Dressler, “Effects and implications of beacon collisions in co-located IEEE 802.15. 4 networks”. n Vehicular Technology Conference (VTC Fall), 2012 pp. 1-5.

M.S.J. Rane, “Throughput optimization” in IEEE 802.15. 4 using GTS mechanism.

R.H. Kim, P.S. Kim, & J.G. Kim, “A MAC Protocol for Fair Data Transmission in the WBSN Environment”, 2014.

R.H. Kim, P.S. Kim, & J.G. Kim, J. G.”A study on MAC protocol for urgent data transmission in Wireless Bio Signal Monitoring Environment”, 2015.

B. Singh, B. “A Study on Traffic Adaptive MAC Protocols for Wireless Body Area Network”. International Journal of Research, 2(5), 20015, pp. 540-547.

Y. Gu, ”The Improvement of CSMA/CA Based on Dynamic Weighting Algorithm”, 2015.

W. Shen, W. (2014). “A Protocol Framework for Adaptive Real-Time Communication in Industrial Wireless Sensor and Actuator Networks”. Doctoral dissertation, Mid Sweden University, 2014.

A.N. Alvi, S.H. Bouk, S.H. Ahmed, M.A. Yaqub, N. Javaid & d. Kim, D. “Enhanced TDMA based MAC protocol for adaptive data control in wireless sensor networks”. Communications and Networks, Journal of, 17(3), 2015, pp. 247-255.

A. Hernandez, “Wireless process control using IEEE 802.15. 4 protocol”. Master Degree Thesis, Royal Institute

of Technology, 2010.

H.A. Abdulmohsin, “Fuzzy Duty Cycle Adaption Algorithm for IEEE 802.15”. 4 Star Topology Networks.

M.S. Saraireh, M. S. ”Performance Analysis of Guaranteed Time Slots Allocation in IEEE 802.15. 4 Protocol over Radio”. Middle-East Journal of Scientific Research, 13(9), 2013, pp. 1137-1143.

A. Cunha, A. Koubâa & M. Alves, “Implementation of the i-GAME Mechanism in IEEE 802.15. 4 WPANs”, 2006.

A. Koubâa, M. Alves, E. Tovar, & A. Cunha, A. “An implicit GTS allocation mechanism in IEEE 802.15. 4 for time-sensitive wireless sensor networks: theory and practice”. Real-Time Systems, 39(1-3), 2008, pp. 169-204.

F. Xia, et al, “Ada-MAC: An adaptive MAC protocol for real-time and reliable health monitoring. In Cyber Technology in Automation, Control, and Intelligent Systems (CYBER)”, IEEE International Conference, 2012, pp. 203-208.

F. Xia, L. Wang, D. Zhang, D. He, & X: Kong, X. “An adaptive MAC protocol for real-time and reliable communications in medical cyber-physical systems. Telecommunication Systems, 58(2), 2015, pp. 125-138.

D. H. Choi, & D.S. Kim, “Wireless fieldbus for networked control systems using LR-WPAN”. International Journal of Control Automation and Systems, 6(1), 2008, pp. 119-125.

F. Chen, et al, “Real-time enabled IEEE 802.15. 4 sensor networks in industrial automation. In Industrial Embedded Systems, 2009. SIES’09. IEEE” International Symposium, 2009, pp. 136-139.

C.W. Na, “IEEE 802.15. 4 Wireless Sensor Networks: GTS Scheduling and Service Differentiation”, Doctoral dissertation, Virginia Polytechnic Institute and State University, 2011.

J. Araújo, “Design, implementation and validation of resource-aware and resilient wireless networked control systems, 2014.

J. Araujo, M. Mazo, A. Anta, P. Tabuada, & K.H. Johansson, “System architectures, protocols and algorithms for aperiodic wireless control systems”. Industrial Informatics, IEEE Transactions on, 10(1), 2014, pp. 175-184.

N. Hayashi and S. Takai, “A GTS scheduling for consensus problems over IEEE 802.15. 4 wireless networks”. In Control Conference (ECC), European, 2013, pp. 1764-1769.

N. Hayashi & S. Takai, ”GTS-based communication task scheduling for quantized output consensus over IEEE 802.15. 4 wireless networks”. Automatica, 55, 2015, pp. 6-11.

I. Al-Anbagi and H.T. Mouftah, “Adaptive time slots control in wireless sensor networks for delay-aware applications”. In Global Communications Conference (GLOBECOM), IEEE, 2014, pp. 222-227.

I. Al-Anbagi, et al, “Tuning guaranteed time slots of IEEE 802.15. 4 for transformer health monitoring in the smart grid”. In Wireless Communications and Networking Conference (WCNC), IEEE, 2014, pp. 3420-3425.

X. Zhang, Y. Jin, & K.S. Kwak, “Adaptive GTS allocation scheme with applications for real-time Wireless Body Area Sensor Networks”. KSII Transactions on Internet and Information Systems (TIIS), 9(5), 2015, pp. 1733-1751.

S.E. Yoo, P.K. Chong, D. Kim, Y. Doh, M.L. Pham, E. Choi & J. Huh. “Guaranteeing real-time services for industrial wireless sensor networks with IEEE 802.15. 4”. Industrial Electronics, IEEE Transactions on, 57(11), 2010, pp. 3868-3876.

T. Semprebom, C. Montez, & F. Vasques, F. “(m, k)- firm pattern spinning to improve the GTS allocation of periodic messages in IEEE 802.15. 4 networks”. EURASIP Journal on Wireless Communications and Networking, (1), 2013, pp. 1-15.

T. Semprebom, et al “Quality of service provision assessment for DDBP approach in IEEE 802.15. 4 networks”. In Industrial Informatics (INDIN), 12th IEEE International Conference, 2014, pp. 118-123.

Wavage, R., & Kaushik, A. (2014). Performance Analysis of Beacon Enabled IEEE 802.15. 4 Using GTS in Zigbee. International Journal of Computer Science & Applications (TIJCSA), 2(12).

L. Cheng, A.G. Bourgeois & X. Zhang. “A new GTS allocation scheme for IEEE 802.15. 4 networks with improved bandwidth utilization”. In Communications and Information Technologies, ISCIT’07. International Symposium, 007, pp. 1143-1148.

J. Chen Et al, “An explicit GTS allocation algorithm for IEEE 802.15”. 4. In Emerging Technologies & Factory Automation (ETFA), IEEE 16th Conference, 2011, pp. 1-8.

S.E. Haque, “Efficient GTS Allocation Schemes for IEEE”, 802.15. 4., 2012.

Azeem, M., Khan, M. I., Faheem, Y., Tamimy, M. I., Malik, N. S., Khan, A., & Ahmed, M. (2014). Reactive GTS Allocation Protocol for Sporadic Events Using the IEEE 802.15. 4. Mathematical Problems in Engineering, 2014.

Choi, W., & Lee, S. (2012). A novel GTS mechanism for reliable multihop transmission in the IEEE 802.15. 4 Network. International Journal of Distributed Sensor Networks, 2012.

Z. Hanzálek & P. Jurčík, “Energy efficient scheduling for cluster-tree Wireless Sensor Networks with timebounded data flows: application to IEEE 802.15. 4/ ZigBee”. Industrial Informatics, IEEE Transactions on, 6(3), 2010, pp. 438-450.

M. Azeem, M.I. Khan, S.U. Khan & W. Gansterer, “Efficient scheduling of sporadic tasks for real-time Wireless sensor networks”. IET Wireless Sensor Systems, 5(1), 2014, pp. 1-10.

A. Ahmad, Z. Hanzalek & C. Hanen, “A polynomial scheduling algorithm for IEEE 802.15. 4/ZigBee cluster tree WSN with one collision domain and period crossing constraint”, In Emerging Technology and Factory Automation (ETFA), IEEE, 2014, pp. 1-8.

K.W. Kim, M.G. Park, J. Han & C.G. Lee, “A Holistic Approach to Optimizing the Lifetime of IEEE 802.15. 4/ZigBee Networks with a Deterministic Guarantee of Real-Time Flows”. Journal of Computing Science and Engineering, 9(2), 2015, pp. 83-97.




DOI: http://dx.doi.org/10.22490/25394088.1443

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.

Licencia de Creative Commons
Revista Publicaciones e Investigación is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.